Resource Type

79 Matching Results

Results open in a new window/tab.

Defect Doping of InN (open access)

Defect Doping of InN

InN films grown by molecular beam epitaxy have been subjected to 2 MeV He{sup +} irradiation followed by thermal annealing. Theoretical analysis of the electron mobilities shows that thermal annealing removes triply charged donor defects, creating films with electron mobilities approaching those predicted for uncompensated, singly charged donors. Optimum thermal annealing of irradiated InN can be used to produce samples with electron mobilities higher than those of as grown films.
Date: July 22, 2007
Creator: Jones, R. E.; van Genuchten, H. C. M.; Yu, K. M.; Walukiewicz, W.; Li, S. X.; A ger III, J. W. et al.
System: The UNT Digital Library
Near-Monodisperse Ni-Cu Bimetallic Nanocrystals of Variable Composition: Controlled Synthesis and Catalytic Activity for H2 Generation (open access)

Near-Monodisperse Ni-Cu Bimetallic Nanocrystals of Variable Composition: Controlled Synthesis and Catalytic Activity for H2 Generation

Near-monodisperse Ni{sub 1-x}Cu{sub x} (x = 0.2-0.8) bimetallic nanocrystals were synthesized by a one-pot thermolysis approach in oleylamine/1-octadecene, using metal acetylacetonates as precursors. The nanocrystals form large-area 2D superlattices, and display a catalytic synergistic effect in the hydrolysis of NaBH{sub 4} to generate H{sub 2} at x = 0.5 in a strongly basic medium. The Ni{sub 0.5}Cu{sub 0.5} nanocrystals show the lowest activation energy, and also exhibit the highest H{sub 2} generation rate at 298 K.
Date: July 22, 2008
Creator: Zhang, Yawen; Huang, Wenyu; Habas, Susan E.; Kuhn, John N.; Grass, Michael E.; Yamada, Yusuke et al.
System: The UNT Digital Library
Seismic stimulation for enhanced oil recovery (open access)

Seismic stimulation for enhanced oil recovery

The pore-scale effects of seismic stimulation on two-phase flow are modeled numerically in random 2D grain0pack geometries. Seismic stimulation aims to enhance oil production by sending seismic waves across a reservoir to liberate immobile patches of oil. For seismic amplitudes above a well-defined (analytically expressed) dimensionless criterion, the force perturbation associated with the waves indeed can liberate oil trapped on capillary barriers and get it flowing again under the background pressure gradient. Subsequent coalescence of the freed oil droplets acts to enhance oil movement further because longer bubbles overcome capillary barriers more efficiently than shorter bubbles do. Poroelasticity theory defines the effective force that a seismic wave adds to the background fluid-pressure gradient. The lattice-Boltzmann model in two dimensions is used to perform pore-scale numerical simulations. Dimensionless numbers (groups of material and force parameters) involved in seismic stimulation are defined carefully so that numerical simulations can be applied to field-scale conditions. Using the analytical criteria defined in the paper, there is a significant range of reservoir conditions over which seismic stimulation can be expected to enhance oil production.
Date: July 22, 2008
Creator: Pride, S. R.; Flekkoy, E. G. & Aursjo, O.
System: The UNT Digital Library
Explosive reaction of cased charges generated by impacts of. 30 calibre bullets (open access)

Explosive reaction of cased charges generated by impacts of. 30 calibre bullets

Several high explosive formulations have recently been compared in a series of impact tests where samples of each composition were encased in a test fixture designed in flat geometry mocking an HE loaded artillery projectile. The purpose of the ongoing test series is to determine the relative rate of chemical energy release or explosiveness of several standard and research insensitive high explosive (IHE) main charge compositions. The triggering stimulus is the impact of .30 calibre ball bullets fired at normal muzzle velocity.
Date: July 22, 1981
Creator: Honodel, C A
System: The UNT Digital Library
Role of molecular dynamics on descriptions of shock-front processes (open access)

Role of molecular dynamics on descriptions of shock-front processes

By means of a computational approach based on classical molecular dynamics, we can begin to form a realistic picture of shock-induced processes occurring at the shock front and resulting from the detailed, violent motion associated with shock motion on an atomic scale. Prototype studies of phase transitions will be discussed. We will also examine the interaction of the shock front with defects, surfaces, voids, and inclusions, and across grain boundaries. We will focus on the critical question of how mechanical energy imparted to a condensed material by shock loading is converted to the activation energy required to overcome some initial energy barrier in an initiation process.
Date: July 22, 1981
Creator: Karo, A.M.
System: The UNT Digital Library
Gamma-ray spectrometry of LDEF samples at SRL (open access)

Gamma-ray spectrometry of LDEF samples at SRL

A total of 31 samples from the Long Duration Exposure Facility (LDEF), including materials of aluminum, vanadium, and steel trunnions were analyzed by ultra-low-level gamma spectroscopy. The study quantified particle induced activations of {sup 22}Na, {sup 46}Sc, {sup 51}Cr, {sup 54}Mn, {sup 56}Co, {sup 57}Co, {sup 58}Co, and {sup 60}Co. The samples of trunnion sections exhibited increasing activity toward the outer end of the trunnion and decreasing activity toward its radial center. The trunnion sections did not include end pieces, which have been reported to collect noticeable {sup 7}Be on their leading surfaces. No significant {sup 7}Be was detected in the samples analyzed. The Underground Counting Facility at Savannah River Laboratory (SRL) was used in this work. The facility is 50 ft. underground, constructed with low-background shielding materials, and operated as a clean room. The most sensitive analyses were performed with a 90%-efficient HPGe gamma-ray detector, which is enclosed in a purged active/passive shield. Each sample was counted for one to six days in two orientations to yield more representative average activities for the sample. The non-standard geometries of the LDEF samples prompted the development of a novel calibration method, whereby the efficiency about the samples surfaces (measured with point …
Date: July 22, 1991
Creator: Winn, Willard G.
System: The UNT Digital Library
Gamma-ray spectrometry of LDEF samples at SRL (open access)

Gamma-ray spectrometry of LDEF samples at SRL

A total of 31 samples from the Long Duration Exposure Facility (LDEF), including materials of aluminum, vanadium, and steel trunnions were analyzed by ultra-low-level gamma spectroscopy. The study quantified particle induced activations of {sup 22}Na, {sup 46}Sc, {sup 51}Cr, {sup 54}Mn, {sup 56}Co, {sup 57}Co, {sup 58}Co, and {sup 60}Co. The samples of trunnion sections exhibited increasing activity toward the outer end of the trunnion and decreasing activity toward its radial center. The trunnion sections did not include end pieces, which have been reported to collect noticeable {sup 7}Be on their leading surfaces. No significant {sup 7}Be was detected in the samples analyzed. The Underground Counting Facility at Savannah River Laboratory (SRL) was used in this work. The facility is 50 ft. underground, constructed with low-background shielding materials, and operated as a clean room. The most sensitive analyses were performed with a 90%-efficient HPGe gamma-ray detector, which is enclosed in a purged active/passive shield. Each sample was counted for one to six days in two orientations to yield more representative average activities for the sample. The non-standard geometries of the LDEF samples prompted the development of a novel calibration method, whereby the efficiency about the samples surfaces (measured with point …
Date: July 22, 1991
Creator: Winn, W. G.
System: The UNT Digital Library
A new approach to modeling linear accelerator systems (open access)

A new approach to modeling linear accelerator systems

A novel computer code is being developed to generate system level designs of radiofrequency ion accelerators with specific applications to machines of interest to Accelerator Driven Transmutation Technologies (ADTT). The goal of the Accelerator System Model (ASM) code is to create a modeling and analysis tool that is easy to use, automates many of the initial design calculations, supports trade studies used in accessing alternate designs and yet is flexible enough to incorporate new technology concepts as they emerge. Hardware engineering parameters and beam dynamics are to be modeled at comparable levels of fidelity. Existing scaling models of accelerator subsystems were used to produce a prototype of ASM (version 1.0) working within the Shell for Particle Accelerator Related Code (SPARC) graphical user interface. A small user group has been testing and evaluating the prototype for about a year. Several enhancements and improvements are now being developed. The current version of ASM is described and examples of the modeling and analysis capabilities are illustrated. The results of an example study, for an accelerator concept typical of ADTT applications, is presented and sample displays from the computer interface are shown.
Date: July 22, 1994
Creator: Gillespie, G. H.; Hill, B. W. & Jameson, R. A.
System: The UNT Digital Library
General MoM Solutions for Large Arrays (open access)

General MoM Solutions for Large Arrays

This paper focuses on a numerical procedure that addresses the difficulties of dealing with large, finite arrays while preserving the generality and robustness of full-wave methods. We present a fast method based on approximating interactions between sufficiently separated array elements via a relatively coarse interpolation of the Green's function on a uniform grid commensurate with the array's periodicity. The interaction between the basis and testing functions is reduced to a three-stage process. The first stage is a projection of standard (e.g., RWG) subdomain bases onto a set of interpolation functions that interpolate the Green's function on the array face. This projection, which is used in a matrix/vector product for each array cell in an iterative solution process, need only be carried out once for a single cell and results in a low-rank matrix. An intermediate stage matrix/vector product computation involving the uniformly sampled Green's function is of convolutional form in the lateral (transverse) directions so that a 2D FFT may be used. The final stage is a third matrix/vector product computation involving a matrix resulting from projecting testing functions onto the Green's function interpolation functions; the low-rank matrix is either identical to (using Galerkin's method) or similar to that for …
Date: July 22, 2003
Creator: Fasenfest, B; Capolino, F; Wilton, D R; Jackson, D R & Champagne, N
System: The UNT Digital Library
MIX and Instability Growth from Oblique Shock (open access)

MIX and Instability Growth from Oblique Shock

We have studied the formation and evolution of shock-induced mix resulting from interface features in a divergent cylindrical geometry. In this research a cylindrical core of high-explosive was detonated to create an oblique shock wave and accelerate the interface. The interfaces studied were between the high-explosive/aluminum, aluminum/plastic, and finally plastic/air. Pre-emplaced surface features added to the aluminum were used to modify this interface. Time sequence radiographic imaging quantified the resulting instability formation from the growth phase to over 60 {micro}s post-detonation. Thus allowing the study of the onset of mix and evolution to turbulence. The plastic used here was porous polyethylene. Radiographic image data are compared with numerical simulations of the experiments.
Date: July 22, 2011
Creator: Molitoris, J D; Batteux, J D; Garza, R G; Tringe, J W; Souers, P C & Forbes, J W
System: The UNT Digital Library
From many body wee partons dynamics to perfect fluid: a standard model for heavy ion collisions (open access)

From many body wee partons dynamics to perfect fluid: a standard model for heavy ion collisions

We discuss a standard model of heavy ion collisions that has emerged both from experimental results of the RHIC program and associated theoretical developments. We comment briefly on the impact of early results of the LHC program on this picture. We consider how this standard model of heavy ion collisions could be solidified or falsified in future experiments at RHIC, the LHC and a future Electro-Ion Collider.
Date: July 22, 2010
Creator: Venugopalan, R.
System: The UNT Digital Library
A molecularly defined duplication set for the X chromosome of Drosophila melanogaster (open access)

A molecularly defined duplication set for the X chromosome of Drosophila melanogaster

We describe a molecularly defined duplication kit for the X chromosome of Drosophila melanogaster. A set of 408 overlapping P[acman] BAC clones was used to create small duplications (average length 88 kb) covering the 22-Mb sequenced portion of the chromosome. The BAC clones were inserted into an attP docking site on chromosome 3L using C31 integrase, allowing direct comparison of different transgenes. The insertions complement 92% of the essential and viable mutations and deletions tested, demonstrating that almost all Drosophila genes are compact and that the current annotations of the genome are reasonably accurate. Moreover, almost all genes are tolerated at twice the normal dosage. Finally, we more precisely mapped two regions at which duplications cause diplo-lethality in males. This collection comprises the first molecularly defined duplication set to cover a whole chromosome in a multicellular organism. The work presented removes a long-standing barrier to genetic analysis of the Drosophila X chromosome, will greatly facilitate functional assays of X-linked genes in vivo, and provides a model for functional analyses of entire chromosomes in other species.
Date: July 22, 2010
Creator: Venken, Koen J. T.; Popodi, Ellen; Holtzman, Stacy L.; Schulze, Karen L.; Park, Soo; Carlson, Joseph W. et al.
System: The UNT Digital Library
Time Lens Based Single-Shot Ultrafast Waveform Recording: From High Repetition Rate to High Dynamic Range (open access)

Time Lens Based Single-Shot Ultrafast Waveform Recording: From High Repetition Rate to High Dynamic Range

None
Date: July 22, 2011
Creator: Bennett, C. V.; Hernandez, V. J.; Moran, B. D.; Lowry, M. E.; Vernon, S. P.; Steele, P. T. et al.
System: The UNT Digital Library
A HIGH REPETITION PLASMA MIRROR FOR STAGED ELECTRON ACCELERATION (open access)

A HIGH REPETITION PLASMA MIRROR FOR STAGED ELECTRON ACCELERATION

In order to build a compact, staged laser plasma accelerator the in-coupling of the laser beam to the different stages represents one of the key issues. To limit the spatial foot print and thus to realize a high overall acceleration gradient, a concept has to be found which realizes this in-coupling within a few centimeters. We present experiments on a tape-drive based plasma mirror which could be used to reflect the focused laser beam into the acceleration stage.
Date: July 22, 2011
Creator: Sokollik, Thomas; Shiraishi, Satomi; Osterhoff, Jens; Evans, Eugene; Gonsalves, Anthony; Nakamura, Kei et al.
System: The UNT Digital Library
Demonstration of a Plasma Mirror Based on a Laminar Flow Water Film (open access)

Demonstration of a Plasma Mirror Based on a Laminar Flow Water Film

A plasma mirror based on a laminar water film with low flow speed 0.5-2 cm/s has been developed and characterized, for use as an ultrahigh intensity optical reflector. The use of flowing water as atarget surface automatically results in each laser pulse seeing a new interaction surface and avoids the need for mechanical scanning of the target surface. In addition, the breakdown of water does notproduce contaminating debris that can be deleterious to vacuum chamber conditions and optics, such as is the case when using conventional solid targets. The mirror exhibits 70percent reflectivity, whilemaintaining high-quality of the reflected spot.
Date: July 22, 2011
Creator: Panasenko, Dmitriy; Shu, Anthony J.; Gonsalves, Anthony; Nakamura, Kei; Matlis, Nicholas H.; Toth, Csaba et al.
System: The UNT Digital Library
Human Factors Engineering Program Review Model (NUREG-0711)Revision 3: Update Methodology and Key Revisions (open access)

Human Factors Engineering Program Review Model (NUREG-0711)Revision 3: Update Methodology and Key Revisions

The U.S. Nuclear Regulatory Commission (NRC) reviews the human factors engineering (HFE) programs of applicants for nuclear power plant construction permits, operating licenses, standard design certifications, and combined operating licenses. The purpose of these safety reviews is to help ensure that personnel performance and reliability are appropriately supported. Detailed design review procedures and guidance for the evaluations is provided in three key documents: the Standard Review Plan (NUREG-0800), the HFE Program Review Model (NUREG-0711), and the Human-System Interface Design Review Guidelines (NUREG-0700). These documents were last revised in 2007, 2004 and 2002, respectively. The NRC is committed to the periodic update and improvement of the guidance to ensure that it remains a state-of-the-art design evaluation tool. To this end, the NRC is updating its guidance to stay current with recent research on human performance, advances in HFE methods and tools, and new technology being employed in plant and control room design. NUREG-0711 is the first document to be addressed. We present the methodology used to update NUREG-0711 and summarize the main changes made. Finally, we discuss the current status of the update program and the future plans.
Date: July 22, 2012
Creator: Ohara J. M.; Higgins, J. & Fleger, S.
System: The UNT Digital Library
Tape-Drive Based Plasma Mirror (open access)

Tape-Drive Based Plasma Mirror

We present experimental results on a tape-drive based plasma mirror which could be used for a compact coupling of a laser beam into a staged laser driven electron accelerator. This novel kind of plasma mirror is suitable for high repetition rates and for high number of laser shots. In order to design a compact, staged laser plasma based accelerator or collider [1], the coupling of the laser beam into the different stages represents one of the key issues. To limit the spatial foot print and thus to realize a high overall acceleration gradient, a concept has to be found which realizes this in-coupling within a few centimeters (cf. Fig 1). The fluence of the laser pulse several centimeters away from the acceleration stage (focus) exceeds the damage threshold of any available mirror coating. Therefore, in reference [2] a plasma mirror was suggested for this purpose. We present experiments on a tape-drive based plasma mirror which could be used to reflect the focused laser beam into the acceleration stage. Plasma mirrors composed of antireflection coated glass substrates are usually used to improve the temporal laser contrast of laser pulses by several orders of magnitudes [3,4]. This is particularly important for laser …
Date: July 22, 2011
Creator: Sokollik, Thomas; Shiraishi, Satomi; Osterhoff, Jens; Evans, Eugene; Gonsalves, Anthony; Nakamura, Kei et al.
System: The UNT Digital Library
Electronic state alignment, orientation, and coherence produced by beam-foil collisions (open access)

Electronic state alignment, orientation, and coherence produced by beam-foil collisions

The cylindrically symmetric beam-foil collision produces excitation and alignment of atom and ion levels similar, but not identical, to that resulting at comparable energies from ion-atom or ion-molecule collisions. When the foil is tilted, the macroscopic change acts on the microscopic scale to produce coherent alignment and orientation of the excited levels. The maximum beam energy range bounding this interaction has not yet been defined. The dynamic interaction which produces these effects is currently not predicted by any theory, although the dynamics of the ions subsequent to the collision are well understood. Refinement of current experimental technique can be expected to better define the final foil surface. The beam-tilted-foil collision promises to be useful in the study of ionic structure via quantum beat, radio-frequency and level-crossing spectroscopy techniques, and may provide a useful probe for certain surface interactions. 4 figs, 48 refs.
Date: July 22, 1975
Creator: Church, D. A.
System: The UNT Digital Library
Spectral Line Shapes as a Diagnostic Tool in Magnetic Fusion (open access)

Spectral Line Shapes as a Diagnostic Tool in Magnetic Fusion

Spectral line shapes and intensities are used for obtaining information on the various regions of magnetic fusion devices. Emission from low principal quantum numbers of hydrogen isotopes is analyzed for understanding the complex recycling mechanism. Lines emitted from high principal quantum numbers of hydrogen and helium are dominated by Stark effect, allowing an electronic density diagnostic in the divertor. Intensities of lines emitted by impurities are fitted for a better knowledge of ion transport in the confined plasma.
Date: July 22, 2006
Creator: Stamm, R.; Capes, H.; Demura, A.; Godbert-Mouret, L; Koubiti, M; Marandet, Y et al.
System: The UNT Digital Library
Femtosecond Near Edge X-ray Absorption Measurement of the VO2Phase Transition (open access)

Femtosecond Near Edge X-ray Absorption Measurement of the VO2Phase Transition

None
Date: July 22, 2004
Creator: Cavalleri, A.; Chong, H. H. W.; Fourmaux, S.; Glover, T. E.; Heimann, P. A; Kieffer, J. C. et al.
System: The UNT Digital Library
FLUX MEASUREMENTS FROM A TALL TOWER IN A COMPLEX LANDSCAPE (open access)

FLUX MEASUREMENTS FROM A TALL TOWER IN A COMPLEX LANDSCAPE

The accuracy and representativeness of flux measurements from a tall tower in a complex landscape was assessed by examining the vertical and sector variability of the ratio of wind speed to momentum flux and the ratio of vertical advective to eddy flux of heat. The 30-60 m ratios were consistent with theoretical predictions which indicate well mixed flux footprints. Some variation with sector was observed that were consistent with upstream roughness. Vertical advection was negligible compared with vertical flux except for a few sectors at night. This implies minor influence from internal boundary layers. Flux accuracy is a function of sector and stability but 30-60 m fluxes were found to be generally representative of the surrounding landscape. This paper will study flux data from a 300 m tower, with 4 levels of instruments, in a complex landscape. The surrounding landscape will be characterized in terms of the variation in the ratio of mean wind speed to momentum flux as a function of height and wind direction. The importance of local advection will be assessed by comparing vertical advection with eddy fluxes for momentum and heat.
Date: July 22, 2010
Creator: Kurzeja, R.; Weber, A.; Chiswell, S. & Parker, M.
System: The UNT Digital Library
Impacts of WRF Physics and Measurement Uncertainty on California Wintertime Model Wet Bias (open access)

Impacts of WRF Physics and Measurement Uncertainty on California Wintertime Model Wet Bias

The Weather and Research Forecast (WRF) model version 3.0.1 is used to explore California wintertime model wet bias. In this study, two wintertime storms are selected from each of four major types of large-scale conditions; Pineapple Express, El Nino, La Nina, and synoptic cyclones. We test the impacts of several model configurations on precipitation bias through comparison with three sets of gridded surface observations; one from the National Oceanographic and Atmospheric Administration, and two variations from the University of Washington (without and with long-term trend adjustment; UW1 and UW2, respectively). To simplify validation, California is divided into 4 regions (Coast, Central Valley, Mountains, and Southern California). Simulations are driven by North American Regional Reanalysis data to minimize large-scale forcing error. Control simulations are conducted with 12-km grid spacing (low resolution) but additional experiments are performed at 2-km (high) resolution to evaluate the robustness of microphysics and cumulus parameterizations to resolution changes. We find that the choice of validation dataset has a significant impact on the model wet bias, and the forecast skill of model precipitation depends strongly on geographic location and storm type. Simulations with right physics options agree better with UW1 observations. In 12-km resolution simulations, the Lin microphysics …
Date: July 22, 2009
Creator: Chin, H S; Caldwell, P M & Bader, D C
System: The UNT Digital Library
Growth and characterization of In{sub x}Ga{sub 1-x}N MQW using a novel method of temperature gradient OMVPE (open access)

Growth and characterization of In{sub x}Ga{sub 1-x}N MQW using a novel method of temperature gradient OMVPE

None
Date: July 22, 2003
Creator: Johnson, M.C.; Jorgensen, R.J.; Wu, J.; Shan, W. & Bourret-Courchesne, E.
System: The UNT Digital Library
Thermal Uniformity of Liquid Helium in Electron Bubble Chamber. (open access)

Thermal Uniformity of Liquid Helium in Electron Bubble Chamber.

A CRYOGENIC RESEARCH APPARATUS TO MEASURE THE MOVEMENT OF ELECTRONS UNDER A HIGH ELECTRIC FIELD IN A LIQUID HELIUM BATH WAS DESIGNED AND BUILT AT THE BROOKHAVEN NATIONAL LABORATORY AND THE NEVIS LABORATORY OF COLUMBIA UNIVERSITY. THE LIQUID HELIUM CHAMBER IS A DOUBLE WALLED CYLINDRICAL CONTAINER EQUIPPED WITH 5 OPTICS WINDOWS AND 10 HIGH VOLTAGE CABLES. TO SHIELD THE LIQUID HELIUM CHAMBER AGAINST THE EXTERNAL HEAT LOADS AND TO PROVIDE THE THERMAL UNIFORMITY IN THE LIQUID HELIUM CHAMBER, THE DOUBLE WALLED JACKET WAS COOLED BY A PUMPED HELIUM BATH. THE HELIUM CHAMBER WAS BUILT INTO A COMMERICAL LN2 / LHE CRYOSTAT. THIS PAPER PRESENTS THE DESIGN AND THE NUMERICAL SIMULATION ANALYSIS ON THERMAL UNIFORMITY OF THE ELECTRON BUBBLE CHAMBER.
Date: July 22, 2002
Creator: Wang, L. & Jia, L.
System: The UNT Digital Library