Apical polarity in three-dimensional culture systems: where to now? (open access)

Apical polarity in three-dimensional culture systems: where to now?

Delineation of the mechanisms that establish and maintain the polarity of epithelial tissues is essential to understanding morphogenesis, tissue specificity and cancer. Three-dimensional culture assays provide a useful platform for dissecting these processes but, as discussed in a recent study in BMC Biology on the culture of mammary gland epithelial cells, multiple parameters that influence the model must be taken into account.
Date: January 21, 2010
Creator: Inman, J. L. & Bissell, Mina
Object Type: Article
System: The UNT Digital Library
AUTOMATING GROUNDWATER SAMPLING AT HANFORD THE NEXT STEP (open access)

AUTOMATING GROUNDWATER SAMPLING AT HANFORD THE NEXT STEP

Historically, the groundwater monitoring activities at the Department of Energy's Hanford Site in southeastern Washington State have been very "people intensive." Approximately 1500 wells are sampled each year by field personnel or "samplers." These individuals have been issued pre-printed forms showing information about the well(s) for a particular sampling evolution. This information is taken from 2 official electronic databases: the Hanford Well information System (HWIS) and the Hanford Environmental Information System (HEIS). The samplers used these hardcopy forms to document the groundwater samples and well water-levels. After recording the entries in the field, the samplers turned the forms in at the end of the day and other personnel posted the collected information onto a spreadsheet that was then printed and included in a log book. The log book was then used to make manual entries of the new information into the software application(s) for the HEIS and HWIS databases. A pilot project for automating this extremely tedious process was lauched in 2008. Initially, the automation was focused on water-level measurements. Now, the effort is being extended to automate the meta-data associated with collecting groundwater samples. The project allowed electronic forms produced in the field by samplers to be used in …
Date: January 21, 2010
Creator: CW, CONNELL; SF, CONLEY; RD, HILDEBRAND; DE, CUNNINGHAM; R_D_Doug_Hildebrand@rl.gov & DeVon_E_Cunningham@rl.gov
Object Type: Article
System: The UNT Digital Library
How Many IVUs Can We Install Without Sacrificing 16-Ma Operation? (open access)

How Many IVUs Can We Install Without Sacrificing 16-Ma Operation?

In this note, the authors examine the following hypothetical scenario: replacing existing 8-mm gap chambers with an in-vacuum undulator (IVU) one by one until they hit the boundary condition of 16-mA single-bunch operation. This is a continuation of a previous technical note on the topics of IVUs. The authors evaluated the impedance of IVU for various gaps. The result showed that the present 8-mm gap chamber can be replaced by the 8.754-mm IVU while maintaining the same 16-mA operational current. The estimates in this note make certain simplifying assumptions bearing on the effectiveness of nonlinear tapers. Subsequent evaluation of the effect of such tapers for APS parameters has cst considerable doubt on their usefulness. This results from the fact that APS has a fairly short electron bunch compared to the vacuum chamber dimensions. Investigation of other methods to decrease the impedance is on-going.
Date: January 21, 2010
Creator: Chae, Y.-C. & (APS), Accelerator Systems Division
Object Type: Report
System: The UNT Digital Library
Long-Term Hydrologic Monitoring Program Sampling and Analysis Results for 2009 (open access)

Long-Term Hydrologic Monitoring Program Sampling and Analysis Results for 2009

The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rulison, Colorado, Site for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 11 and 12, 2009. Samples were analyzed by the U.S. Environmental Protection Agency (EPA) Radiation&Indoor Environments National Laboratory in Las Vegas, Nevada. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectroscopy and for tritium using the conventional and enriched methods.
Date: January 21, 2010
Creator: unknown
Object Type: Report
System: The UNT Digital Library
Making the Standard Candle: A study of how the progenitor white dwarf modulates the peak luminosity of type Ia supernovae (open access)

Making the Standard Candle: A study of how the progenitor white dwarf modulates the peak luminosity of type Ia supernovae

The goals of the proposed research as stated in the proposal were to: • Build a suite of one-dimensional initial models of different metallicities and central densities. • Using the improved flame capturing scheme, simulate the explosion of a white dwarf with embedded Lagrangian tracer particles, and post-process the thermal histories of the tracers to reconstruct the nucleosynthesis of the explosion. • Survey the effects of a changing progenitor metallicity on the isotopic yields. Of particular interest is 1) whether the linear relation between the mass of 56Ni synthesized and the pro- genitor metallicity is moderated by the effect of electron captures in the core; and 2) how a varying central density alters the relation between metallicity and 56Ni mass. • Using these results, examine how the observed metallicity distribution would affect the brightness distribution of SNe Ia and the isotopic ratios about the Fe-peak.
Date: January 21, 2010
Creator: Brown, Edward F
Object Type: Report
System: The UNT Digital Library
Masked Photocathode for Photoinjector (open access)

Masked Photocathode for Photoinjector

In this research note, we propose a scheme to insert a photocathode inside a photoinjector for generating high brightness electron beam. Instead of mounting the photocathode onto the electrode, a masked electrode with small hole is used to shield the photocathode from the accelerating vacuum chamber. Using such a masked photocathode will make the replacement of photocathode material very simple by rotating the photocathode behind the mask into the hole. This will significantly increase the usage lifetime of a photocathode. Furthermore, this also helps reduce the dark current or secondary electron emission from the photocathode. The hole on the mask also provides a transverse cut-off to the Gaussian laser profile which can be beneficial from the beam dynamics point of view.
Date: January 21, 2010
Creator: Qiang, Ji
Object Type: Report
System: The UNT Digital Library
Ni-Si Alloys for the S-I Reactor-Hydrogen Production Process Interface (open access)

Ni-Si Alloys for the S-I Reactor-Hydrogen Production Process Interface

The overall goal of this project was to develop Ni-Si alloys for use in vessels to contain hot, pressurized sulfuric acid. The application was to be in the decomposition loop of the thermochemical cycle for production of hydrogen.
Date: January 21, 2010
Creator: Newkirk, Joseph W. & Brow, Richard K.
Object Type: Report
System: The UNT Digital Library
Radioactive Threat Detection with Scattering Physics: A Model-Based Application (open access)

Radioactive Threat Detection with Scattering Physics: A Model-Based Application

The detection of radioactive contraband is a critical problem in maintaining national security for any country. Emissions from threat materials challenge both detection and measurement technologies especially when concealed by various types of shielding complicating the transport physics significantly. The development of a model-based sequential Bayesian processor that captures both the underlying transport physics including scattering offers a physics-based approach to attack this challenging problem. It is shown that this processor can be used to develop an effective detection technique.
Date: January 21, 2010
Creator: Candy, J V; Chambers, D H; Breitfeller, E F; Guidry, B L; Verbeke, J M; Axelrod, M A et al.
Object Type: Article
System: The UNT Digital Library
Weighting Factors for the Commercial Building Prototypes Used in the Development of ANSI/ASHRAE/IESNA Standard 90.1-2010 (open access)

Weighting Factors for the Commercial Building Prototypes Used in the Development of ANSI/ASHRAE/IESNA Standard 90.1-2010

Detailed construction data from the McGraw Hill Construction Database was used to develop construction weights by climate zones for use with DOE Benchmark Buildings and for the ASHRAE Standard 90.1-2010 development. These construction weights were applied to energy savings estimates from simulation of the benchmark buildings to establish weighted national energy savings.
Date: January 21, 2010
Creator: Jarnagin, Ronald E. & Bandyopadhyay, Gopal K.
Object Type: Report
System: The UNT Digital Library
Application of Ensemble Sensitivity Analysis to Observation Targeting for Short-term Wind Speed Forecasting (open access)

Application of Ensemble Sensitivity Analysis to Observation Targeting for Short-term Wind Speed Forecasting

The operators of electrical grids, sometimes referred to as Balancing Authorities (BA), typically make critical decisions on how to most reliably and economically balance electrical load and generation in time frames ranging from a few minutes to six hours ahead. At higher levels of wind power generation, there is an increasing need to improve the accuracy of 0- to 6-hour ahead wind power forecasts. Forecasts on this time scale have typically been strongly dependent on short-term trends indicated by the time series of power production and meteorological data from a wind farm. Additional input information is often available from the output of Numerical Weather Prediction (NWP) models and occasionally from off-site meteorological towers in the region surrounding the wind generation facility. A widely proposed approach to improve short-term forecasts is the deployment of off-site meteorological towers at locations upstream from the wind generation facility in order to sense approaching wind perturbations. While conceptually appealing, it turns out that, in practice, it is often very difficult to derive significant benefit in forecast performance from this approach. The difficulty is rooted in the fact that the type, scale, and amplitude of the processes controlling wind variability at a site change from day …
Date: February 21, 2010
Creator: Zack, J; Natenberg, E; Young, S; Manobianco, J & Kamath, C
Object Type: Report
System: The UNT Digital Library
Bridging silyl groups in sigma-bond metathesis and [1, 2] shifts. An experimental and computational study of the reaction between cerium metallocenes and MeOSiMe3 (open access)

Bridging silyl groups in sigma-bond metathesis and [1, 2] shifts. An experimental and computational study of the reaction between cerium metallocenes and MeOSiMe3

The reaction of Cp'2CeH (Cp' = 1,2,4-(Me3C)3C5H2 ) with MeOSiMe3 gives Cp'2CeOMe and HSiMe3 and the reaction of the metallacycle, Cp'[(Me3C)2C5H2C(Me) 2CH2]Ce, with MeOSiMe3 yields Cp'2CeOCH2SiMe3, formed from hypothetical Cp'2CeCH2OSiMe3 by a [1, 2] shift also known as a silyl-Wittig rearrangement. Although both cerium products are alkoxides, they are formed by different pathways. DFT calculations on the reaction of the model metallocene, Cp2CeH, and MeOSiMe3 show that the lowest energy pathway is a H for OMe exchange at Ce that occurs by way of a sigma-bond metathesis transition state as SiMe3 exchanges partners. The formation of Cp2CeOCH2SiMe3 occurs by way of a low activation barrier [1, 2]shift of the SiMe3 group in Cp2CeCH2OSiMe3. Calculations on a model metallacycle, Cp[C5H4C(Me)2CH2]Ce, show that the metallacycle favors CH bond activation over sigma-bond metathesis involving the transfer of the SiMe3 group in good agreement with experiment. The sigma-bond metathesis involving the transfer of SiMe3 and the [1, 2]shift of SiMe3 reactions have in common a pentacoordinate silicon at the transition states. A molecular orbital analysis illustrates the connection between these two Si-O bond cleavage reactions and traces the reason why they occur for a silyl but not for an alkyl group to the difference …
Date: April 21, 2010
Creator: Werkema, Evan; Yahia, Ahmed; Maron, Laurent; Eisenstein, Odile & Andersen, Richard
Object Type: Article
System: The UNT Digital Library
Electron Generation and Transport in Intense Relativistic Laser-Plasma Interactions Relevant to Fast Ignition ICF (open access)

Electron Generation and Transport in Intense Relativistic Laser-Plasma Interactions Relevant to Fast Ignition ICF

The reentrant cone approach to Fast Ignition, an advanced Inertial Confinement Fusion scheme, remains one of the most attractive because of the potential to efficiently collect and guide the laser light into the cone tip and direct energetic electrons into the high density core of the fuel. However, in the presence of a preformed plasma, the laser energy is largely absorbed before it can reach the cone tip. Full scale fast ignition laser systems are envisioned to have prepulses ranging between 100 mJ to 1 J. A few of the imperative issues facing fast ignition, then, are the conversion efficiency with which the laser light is converted to hot electrons, the subsequent transport characteristics of those electrons, and requirements for maximum allowable prepulse this may put on the laser system. This dissertation examines the laser-to-fast electron conversion efficiency scaling with prepulse for cone-guided fast ignition. Work in developing an extreme ultraviolet imager diagnostic for the temperature measurements of electron-heated targets, as well as the validation of the use of a thin wire for simultaneous determination of electron number density and electron temperature will be discussed.
Date: April 21, 2010
Creator: Ma, T
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Extracellular oxidative metabolism of wood decay fungi (open access)

Extracellular oxidative metabolism of wood decay fungi

Substantial progress has been made toward understanding the fundamental physiology and genetics of wood decay fungi, microbes that are capable of degrading all major components of plant cell walls. Efficient utilization of lignocellulosic biomass has been hampered in part by limitations in our understanding of enzymatic mechanisms of plant cell wall degradation. This is particularly true of woody substrates where accessibility and high lignin content substantially complicate enzymatic 'deconstruction'. The interdisciplinary research has illuminated enzymatic mechanisms essential for the conversion of lignocellulosics to simple carbohydrates and other small molecular weight products. Progress was in large part dependent on substantial collaborations with the Department of Energy's Joint Genome Institute (JGI) in Walnut Creek and Los Alamos, as well as the Catholic University, Santiago, Chile, the Royal Institute of Technology, Stockholm, the University of Minnesota, St. Paul, and colleagues at the University of Wisconsin and the Forest Products Laboratory. Early accomplishments focused on the development of experimental tools (2, 7, 22, 24-26, 32) and characterization of individual genes and enzymes (1, 3-5, 8, 9, 11, 14, 15, 17, 18, 23, 27, 33). In 2004, the genome of the most intensively studied lignin-degrading fungus, Phanerochaete chrysosporium, was published (21). This milestone lead to …
Date: April 21, 2010
Creator: Cullen, Daniel
Object Type: Report
System: The UNT Digital Library
High Pressure Burn Rate Measurements on an Ammonium Perchlorate Propellant (open access)

High Pressure Burn Rate Measurements on an Ammonium Perchlorate Propellant

High pressure deflagration rate measurements of a unique ammonium perchlorate (AP) based propellant are required to design the base burn motor for a Raytheon weapon system. The results of these deflagration rate measurements will be key in assessing safety and performance of the system. In particular, the system may experience transient pressures on the order of 100's of MPa (10's kPSI). Previous studies on similar AP based materials demonstrate that low pressure (e.g. P < 10 MPa or 1500 PSI) burn rates can be quite different than the elevated pressure deflagration rate measurements (see References and HPP results discussed herein), hence elevated pressure measurements are necessary in order understand the deflagration behavior under relevant conditions. Previous work on explosives have shown that at 100's of MPa some explosives will transition from a laminar burn mechanism to a convective burn mechanism in a process termed deconsolidative burning. The resulting burn rates that are orders-of-magnitude faster than the laminar burn rates. Materials that transition to the deconsolidative-convective burn mechanism at elevated pressures have been shown to be considerably more violent in confined heating experiments (i.e. cook-off scenarios). The mechanisms of propellant and explosive deflagration are extremely complex and include both chemical, and …
Date: April 21, 2010
Creator: Glascoe, E A & Tan, N
Object Type: Report
System: The UNT Digital Library
Influence of molecular ordering on electrical and friction properties of omega-(trans-4-stilbene)alkylthiol self-assembled monolayers on Au (111) (open access)

Influence of molecular ordering on electrical and friction properties of omega-(trans-4-stilbene)alkylthiol self-assembled monolayers on Au (111)

The electrical and friction properties of omega-(trans-4-stilbene)alkylthiol self-assembled monolayers (SAMs) on Au(111) were investigated using atomic force microscopy (AFM) and near edge x-ray absorption fine structure spectroscopy (NEXAFS). The sample surface was uniformly covered with a molecular film consisting of very small grains. Well-ordered and flat monolayer islands were formed after the sample was heated in nitrogen at 120 oC for 1 h. While lattice resolved AFM images revealed a crystalline phase in the islands, the area between islands showed no order. The islands exhibit substantial reduction (50percent) in friction, supporting the existence of good ordering. NEXAFS measurements revealed an average upright molecular orientation in the film, both before and after heating, with a narrower tilt-angle distribution for the heated fim. Conductance-AFM measurements revealed a two orders of magnitude higher conductivity on the ordered islands than on the disordered phase. We propose that the conductance enhancement is a result of a better pi-pi stacking between the trans-stilbene molecular units as a result of improved ordering in islands.
Date: April 21, 2010
Creator: Qi, Yabing; Liu, Xiaosong; Hendriksen, B.L.M.; Navarro, V.; Park, Jeong Y.; Ratera, Imma et al.
Object Type: Article
System: The UNT Digital Library
A new method to generate dust with astrophysical properties (open access)

A new method to generate dust with astrophysical properties

In interstellar and interplanetary space, the size distribution and composition of dust grains play an important role. For example, dust grains determine optical and ultraviolet extinction levels in astronomical observations, dominate the cooling rate of our Galaxy, and sets the thermal balance and radiative cooling rates in molecular clouds, which are the birth place of stars. Dust grains are also a source of damage and failure to space hardware and thus present a hazard to space flight. To model the size distribution and composition of dust grains, and their effect in the above scenarios, it is vital to understand the mechanism of dust-shock interaction. We demonstrate a new experiment which employs a laser to subject dust grains to pressure spikes similar to those of colliding astrophysical dust, and which accelerates the grains to astrophysical velocities. The new method generates much larger data sets than earlier methods; we show how large quantities (thousands) of grains are accelerated at once, rather than accelerating individual grains, as is the case of earlier methods using electric fields.
Date: April 21, 2010
Creator: Hansen, J. F.; van Breugel, W.; Bringa, E. M.; Graham, G. A.; Remington, B. A.; Taylor, E. A. et al.
Object Type: Article
System: The UNT Digital Library
Probing Radiation Damage in Plutonium Alloys with Multiple Measurement Techniques (open access)

Probing Radiation Damage in Plutonium Alloys with Multiple Measurement Techniques

A material subjected to radiation damage will usually experience changes in its physical properties. Measuring these changes in the physical properties provides a basis to study radiation damage in a material which is important for a variety of real world applications from reactor materials to semiconducting devices. When investigating radiation damage, the relative sensitivity of any given property can vary considerably based on the concentration and type of damage present as well as external parameters such as the temperature and starting material composition. By measuring multiple physical properties, these differing sensitivities can be leveraged to provide greater insight into the different aspects of radiation damage accumulation, thereby providing a broader understanding of the mechanisms involved. In this report, self-damage from {alpha}-particle decay in Pu is investigated by measuring two different properties: magnetic susceptibility and resistivity. The results suggest that while the first annealing stage obeys second order chemical kinetics, the primary mechanism is not the recombination of vacancy-interstitial close pairs.
Date: April 21, 2010
Creator: McCall, S K; Fluss, M J & Chung, B W
Object Type: Article
System: The UNT Digital Library
SciDAC's Earth System Grid Center for Enabling Technologies Semi-Annual Progress Report for the Period October 1, 2009 through March 31, 2010 (open access)

SciDAC's Earth System Grid Center for Enabling Technologies Semi-Annual Progress Report for the Period October 1, 2009 through March 31, 2010

This report summarizes work carried out by the ESG-CET during the period October 1, 2009 through March 31, 2009. It includes discussion of highlights, overall progress, period goals, collaborations, papers, and presentations. To learn more about our project, and to find previous reports, please visit the Earth System Grid Center for Enabling Technologies (ESG-CET) website. This report will be forwarded to the DOE SciDAC program management, the Office of Biological and Environmental Research (OBER) program management, national and international collaborators and stakeholders (e.g., the Community Climate System Model (CCSM), the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5), the Climate Science Computational End Station (CCES), the SciDAC II: A Scalable and Extensible Earth System Model for Climate Change Science, the North American Regional Climate Change Assessment Program (NARCCAP), and other wide-ranging climate model evaluation activities).
Date: April 21, 2010
Creator: Williams, D. N.; Foster, I. T.; Middleton, D. E.; Ananthakrishnan, R.; Siebenlist, F.; Shoshani, A. et al.
Object Type: Report
System: The UNT Digital Library
SECONDARY ELECTRON TRAJECTORIES IN HIGH-GRADIENT VACUUM INSULATORS WITH FAST HIGH-VOLTAGE PULSES (open access)

SECONDARY ELECTRON TRAJECTORIES IN HIGH-GRADIENT VACUUM INSULATORS WITH FAST HIGH-VOLTAGE PULSES

Vacuum insulators composed of alternating layers of metal and dielectric, known as high-gradient insulators (HGIs), have been shown to withstand higher electric fields than conventional insulators. Primary or secondary electrons (emitted from the insulator surface) can be deflected by magnetic fields from external sources, the high-current electron beam, the conduction current in the transmission line, or the displacement current in the insulator. These electrons are deflected either toward or away from the insulator surface and this affects the performance of the vacuum insulator. This paper shows the effects of displacement current from short voltage pulses on the performance of high gradient insulators. Generally, vacuum insulator failure is due to surface flashover, initiated by electrons emitted from a triple junction. These electrons strike the insulator surface thus producing secondary electrons, and can lead to a subsequent electron cascade along the surface. The displacement current in the insulator can deflect electrons either toward or away from the insulator surface, and affects the performance of the vacuum insulator when the insulator is subjected to a fast high-voltage pulse. Vacuum insulators composed of alternating layers of metal and dielectric, known as high-gradient insulators (HGIs), have been shown to withstand higher electric fields than conventional …
Date: April 21, 2010
Creator: Chen, Y.; Blackfield, D.; Nelson, S. D. & Poole, B.
Object Type: Article
System: The UNT Digital Library
Self-guided Laser Wakefield Acceleration Beyond 1 GeV using Ionization-induced Injection (open access)

Self-guided Laser Wakefield Acceleration Beyond 1 GeV using Ionization-induced Injection

None
Date: April 21, 2010
Creator: Clayton, C. E.; Ralph, J. E.; Albert, F.; Fonseca, R. A.; Glenzer, S. H.; Joshi, C. et al.
Object Type: Article
System: The UNT Digital Library
Aerosol-Assisted Solid Debris Collection for the National Ignition Facility (open access)

Aerosol-Assisted Solid Debris Collection for the National Ignition Facility

The National Ignition Facility (NIF) has been completed and has made its first shots on-target. While upcoming experiments will be focused on achieving ignition, a variety of subsequent experiments are planned for the facility, including measurement of cross sections, astrophysical measurements, and investigation of hydrodynamic instability in the target capsule. In order to successfully execute several of these planned experiments, the ability to collect solid debris following a NIF capsule shot will be required. The ability to collect and analyze solid debris generated in a shot at the National Ignition Facility (NIF) will greatly expand the number of nuclear reactions studied for diagnostic purposes. Currently, reactions are limited to only those producing noble gases for cryogenic collection and counting with the Radchem Apparatus for Gas Sampling (RAGS). The radchem solid collection diagnostic has already been identified by NIF to be valuable for the determination and understanding of mix generated in the target capsule's ablation. LLNL is currently developing this solid debris collection capability at NIF, and is in the stage of testing credible designs. Some of these designs explore the use of x-ray generated aerosols to assist in collection of solid debris. However, the variety of harsh experimental conditions this …
Date: May 21, 2010
Creator: Nelson, S. L.; Shaughnessy, D. A.; Moody, K. J.; Ivanov, V. V.; Astanovitskiy, A. L.; Lewis, L. A. et al.
Object Type: Article
System: The UNT Digital Library
Analytical solution for Joule-Thomson cooling during CO2 geo-sequestration in depleted oil and gas reservoirs (open access)

Analytical solution for Joule-Thomson cooling during CO2 geo-sequestration in depleted oil and gas reservoirs

Mathematical tools are needed to screen out sites where Joule-Thomson cooling is a prohibitive factor for CO{sub 2} geo-sequestration and to design approaches to mitigate the effect. In this paper, a simple analytical solution is developed by invoking steady-state flow and constant thermophysical properties. The analytical solution allows fast evaluation of spatiotemporal temperature fields, resulting from constant-rate CO{sub 2} injection. The applicability of the analytical solution is demonstrated by comparison with non-isothermal simulation results from the reservoir simulator TOUGH2. Analysis confirms that for an injection rate of 3 kg s{sup -1} (0.1 MT yr{sup -1}) into moderately warm (>40 C) and permeable formations (>10{sup -14} m{sup 2} (10 mD)), JTC is unlikely to be a problem for initial reservoir pressures as low as 2 MPa (290 psi).
Date: May 21, 2010
Creator: Mathias, S.A.; Gluyas, J.G.; Oldenburg, C.M. & Tsang, C.-F.
Object Type: Article
System: The UNT Digital Library
Automated detection and analysis of particle beams in laser-plasma accelerator simulations (open access)

Automated detection and analysis of particle beams in laser-plasma accelerator simulations

Numerical simulations of laser-plasma wakefield (particle) accelerators model the acceleration of electrons trapped in plasma oscillations (wakes) left behind when an intense laser pulse propagates through the plasma. The goal of these simulations is to better understand the process involved in plasma wake generation and how electrons are trapped and accelerated by the wake. Understanding of such accelerators, and their development, offer high accelerating gradients, potentially reducing size and cost of new accelerators. One operating regime of interest is where a trapped subset of electrons loads the wake and forms an isolated group of accelerated particles with low spread in momentum and position, desirable characteristics for many applications. The electrons trapped in the wake may be accelerated to high energies, the plasma gradient in the wake reaching up to a gigaelectronvolt per centimeter. High-energy electron accelerators power intense X-ray radiation to terahertz sources, and are used in many applications including medical radiotherapy and imaging. To extract information from the simulation about the quality of the beam, a typical approach is to examine plots of the entire dataset, visually determining the adequate parameters necessary to select a subset of particles, which is then further analyzed. This procedure requires laborious examination of …
Date: May 21, 2010
Creator: Ushizima, Daniela Mayumi; Geddes, Cameron G.; Cormier-Michel, Estelle; Bethel, E. Wes; Jacobsen, Janet; Prabhat et al.
Object Type: Book
System: The UNT Digital Library
AVNG as a Test Case for Cooperative Design (open access)

AVNG as a Test Case for Cooperative Design

Designing a measurement system that might be used in a nuclear facility is a challenging, if not daunting, proposition. The situation is made more complicated when the system needs to be designed to satisfy the disparate requirements of a monitoring and a host party - a relationship that could prove to be adversarial. The cooperative design of the elements of the AVNG (Attribute Verification with Neutrons and Gamma Rays) system served as a crucible that exercised the possible pitfalls in the design and implementation of a measurement system that could be used in a host party nuclear facility that satisfied the constraints of operation for both the host and monitoring parties. Some of the issues that needed to be addressed in the joint design were certification requirements of the host party and the authentication requirements of the monitoring party. In this paper the nature of the problem of cooperative design will be introduced. The details of cooperative design revolve around the idiosyncratic nature of the adversarial relationship between the parties involved in a possible measurement regime, particularly if measurements on items that may contain sensitive information are being pursued. The possibility of an adversarial interaction is more likely if an …
Date: May 21, 2010
Creator: Luke, S J
Object Type: Article
System: The UNT Digital Library