3 Matching Results

Results open in a new window/tab.

Cellular membrane trafficking of mesoporous silica nanoparticles (open access)

Cellular membrane trafficking of mesoporous silica nanoparticles

This dissertation mainly focuses on the investigation of the cellular membrane trafficking of mesoporous silica nanoparticles. We are interested in the study of endocytosis and exocytosis behaviors of mesoporous silica nanoparticles with desired surface functionality. The relationship between mesoporous silica nanoparticles and membrane trafficking of cells, either cancerous cells or normal cells was examined. Since mesoporous silica nanoparticles were applied in many drug delivery cases, the endocytotic efficiency of mesoporous silica nanoparticles needs to be investigated in more details in order to design the cellular drug delivery system in the controlled way. It is well known that cells can engulf some molecules outside of the cells through a receptor-ligand associated endocytosis. We are interested to determine if those biomolecules binding to cell surface receptors can be utilized on mesoporous silica nanoparticle materials to improve the uptake efficiency or govern the mechanism of endocytosis of mesoporous silica nanoparticles. Arginine-glycine-aspartate (RGD) is a small peptide recognized by cell integrin receptors and it was reported that avidin internalization was highly promoted by tumor lectin. Both RGD and avidin were linked to the surface of mesoporous silica nanoparticle materials to investigate the effect of receptor-associated biomolecule on cellular endocytosis efficiency. The effect of ligand …
Date: June 21, 2012
Creator: Fang, I-Ju
System: The UNT Digital Library
Development of Trivalent Ytterbium Doped Fluorapatites for Diode-Pumped Laser Applications (open access)

Development of Trivalent Ytterbium Doped Fluorapatites for Diode-Pumped Laser Applications

One of the major motivators of this work is the Mercury Project, which is a 1 kW scalable diode-pumped solid-state laser system under development at Lawrence Livermore National Laboratory (LLNL). Major goals include 100 J pulses, 10% wallplug efficiency, 10 Hz repetition rate, and a 5 times diffraction limited beam. To achieve these goals the Mercury laser incorporates ytterbium doped Sr{sub 5}(PO{sub 4}){sub 3}F (S-FAP) as the amplifier gain medium. The primary focus of this thesis is a full understanding of the properties of this material which are necessary for proper design and modeling of the system. Ytterbium doped fluorapatites, which were previously investigated at LLNL, were found to be ideal candidate materials for a high power amplifier systems providing high absorption and emission cross sections, long radiative lifetimes, and high efficiency. A family of barium substituted S-FAP crystals were grown in an effort to modify the pump and emission bandwidths for application to broadband diode pumping and short pulse generation. Crystals of Yb{sup 3+}:Sr{sub 5-x}Ba{sub x}(PO{sub 4}){sub 3}F where x < 1 showed homogeneous lines offering 8.4 nm (1.8 times enhancement) of absorption bandwidth and 6.9 nm (1.4 times enhancement) of emission bandwidth. The gain saturation fluence of Yb:S-FAP …
Date: June 21, 2000
Creator: Bayramian, A. J.
System: The UNT Digital Library
THERMOLUMINESCENCE SPECTRA AND ACTIVATION ENERGIES FOR AROMATIC AMINO ACIDS, TRYPSIN, AND SPORES OF BACILLUS MEGATERIUM (open access)

THERMOLUMINESCENCE SPECTRA AND ACTIVATION ENERGIES FOR AROMATIC AMINO ACIDS, TRYPSIN, AND SPORES OF BACILLUS MEGATERIUM

The theory of thermoluminescence is reviewed. The spectral distribution of thermoluminescence and the activation energies associated with peaks of the glow curves were determined for samples of aromatic amino acids, trypsin, and spores of Bacillus megaterium irradiated by a Co/sup 60/ gamma source. All of the substances, except phenylalanine, exhibited a readily observable long-lived glow that persisted up to at least 2 hr following irradiation. Possible reaction mechanisms in the production of thermoluminescence in biological materials are discussed. (C.H.)
Date: June 21, 1963
Creator: Weinberg, C. J.; Carter, J. G.; Nelson, D. R. & Birkhoff, R. D.
System: The UNT Digital Library