95 Matching Results

Results open in a new window/tab.

First-principles theory of metal-alkaline earth oxide interfaces (open access)

First-principles theory of metal-alkaline earth oxide interfaces

Article on the first-principles theory of metal-alkaline earth oxide interfaces.
Date: June 21, 2006
Creator: Nuñez, Matías & Buongiorno Nardelli, Marco
System: The UNT Digital Library
First Principles Study of Double Photoionization of H2 UsingExterior Complex Scaling (open access)

First Principles Study of Double Photoionization of H2 UsingExterior Complex Scaling

Exterior complex scaling provides a practical path forfirst-principles studies of atomic and molecular ionizationproblemssince it avoids explicit enforcement of asymptotic boundary conditionsfor 3-body Coulomb breakup. We have used the method of exterior complexscaling, implemented with both the discrete variable representation andB-splines, to obtain the first-order wave function for molecular hydrogencorresponding to a single photon having been absorbed by a correlatedinitial state. These wave functions are used to construct convergedtriple differential cross sections for double photoionization of alignedH2 molecules.
Date: July 21, 2006
Creator: Rescigno, Thomas N.; Vanroose, Wim; Horner, Daniel A.; Martin,Fernando & McCurdy, C. William
System: The UNT Digital Library
Dissociative electron attachment to the H2O molecule II: nucleardynamics on coupled electronic surfaces within the local complexpotential model (open access)

Dissociative electron attachment to the H2O molecule II: nucleardynamics on coupled electronic surfaces within the local complexpotential model

We report the results of a first-principles study of dissociative electron attachment (DEA) to H{sub 2}O. The cross sections were obtained from nuclear dynamics calculations carried out in full dimensionality within the local complex potential model by using the multi-configuration time-dependent Hartree method. The calculations employ our previously obtained global, complex-valued, potential energy surfaces for the three ({sup 2}B{sub 1}, {sup 2}A{sub 1}, and {sup 2}B{sub 2}) electronic Feshbach resonances involved in this process. These three metastable states of H{sub 2}O{sup -} undergo several degeneracies, and we incorporate both the Renner-Teller coupling between the {sup 2}B{sub 1} and {sup 2}A{sub 1} states, as well as the conical intersection between the {sup 2}A{sub 1} and {sup 2}B{sub 2} states, into our treatment. The nuclear dynamics are inherently multi-dimensional and involve branching between different final product arrangements as well as extensive excitation of the diatomic fragment. Our results successfully mirror the qualitative features of the major fragment channels observed, but are less successful in reproducing the available results for some of the minor channels. We comment on the applicability of the local complex potential model to such a complicated resonant system.
Date: December 21, 2006
Creator: Haxton, Daniel J.; Rescigno, Thomas N. & McCurdy, C. William
System: The UNT Digital Library
Novel Laser-Based Manufacturing of nano-LiFePO4-Based Materialsfor High Power Li Ion Batteries (open access)

Novel Laser-Based Manufacturing of nano-LiFePO4-Based Materialsfor High Power Li Ion Batteries

None
Date: December 21, 2006
Creator: Horne, Craig R.; Jaiswal, Abhishek; Chang, On; Crane, S.; Doeff,Marca M. & Wang, Emile
System: The UNT Digital Library
Effect of Lithium PFC Coatings on NSTX Density Control (open access)

Effect of Lithium PFC Coatings on NSTX Density Control

Lithium coatings on the graphite plasma facing components (PFCs) in NSTX are being investigated as a tool for density profile control and reducing the recycling of hydrogen isotopes. Repeated lithium pellet injection into Center Stack Limited and Lower Single Null Ohmic Helium Discharges were used to coat graphite surfaces that had been pre-conditioned with Ohmic Helium Discharges of the same shape to reduce their contribution to hydrogen isotope recycling. The following deuterium NBI reference discharges exhibited a reduction in density by a factor of about 3 for limited and 2 for diverted plasmas respectively, and peaked density profiles. Recently, a lithium evaporator has been used to apply thin coatings on conditioned and unconditioned PFCs. Effects on the plasma density and the impurities were obtained by pre-conditioning the PFCs with ohmic helium discharges, and performing the first deuterium NBI discharge as soon as possible after applying the lithium coating.
Date: August 21, 2006
Creator: Kugel, H W; Bell, M G; Bush, C; Gates, D; Gray, T; Kaita, R et al.
System: The UNT Digital Library
DSP-Based dual-polarity mass spectrum pattern recognition for bio-detection (open access)

DSP-Based dual-polarity mass spectrum pattern recognition for bio-detection

The Bio-Aerosol Mass Spectrometry (BAMS) instrument analyzes single aerosol particles using a dual-polarity time-of-flight mass spectrometer recording simultaneously spectra of thirty to a hundred thousand points on each polarity. We describe here a real-time pattern recognition algorithm developed at Lawrence Livermore National Laboratory that has been implemented on a nine Digital Signal Processor (DSP) system from Signatec Incorporated. The algorithm first preprocesses independently the raw time-of-flight data through an adaptive baseline removal routine. The next step consists of a polarity dependent calibration to a mass-to-charge representation, reducing the data to about five hundred to a thousand channels per polarity. The last step is the identification step using a pattern recognition algorithm based on a library of known particle signatures including threat agents and background particles. The identification step includes integrating the two polarities for a final identification determination using a score-based rule tree. This algorithm, operating on multiple channels per-polarity and multiple polarities, is well suited for parallel real-time processing. It has been implemented on the PMP8A from Signatec Incorporated, which is a computer based board that can interface directly to the two one-Giga-Sample digitizers (PDA1000 from Signatec Incorporated) used to record the two polarities of time-of-flight data. By using …
Date: April 21, 2006
Creator: Riot, V; Coffee, K; Gard, E; Fergenson, D; Ramani, S & Steele, P
System: The UNT Digital Library
On prediction of wind-borne plumes with simple models of turbulenttransport (open access)

On prediction of wind-borne plumes with simple models of turbulenttransport

The dispersion of pollutants from the ground by turbulent winds is difficult to model in general. However, for flat homogeneous terrain and steady wind conditions, if the wind profile is modeled with a power-law dependence on height, the advection-dispersion equation has an exact solution. In this paper the analytical solution is compared to a numerical simulation of the coupled air-ground system for a leaking underground gas storage, with a power-law velocity profile that was fit to the logarithmic velocity profile used in the simulation. The two methods produced similar results far from the boundaries, but the boundary conditions had a strong effect; the simulation imposed boundary conditions at the edge of a finite domain while the analytic solution imposes them at infinity. The reverse seepage from air to ground was shown in the simulation to be very small, and the sharp contrast between time scales suggests that air and ground can be modeled separately, with gas emissions from the ground model used as inputs to the air model.
Date: June 21, 2006
Creator: Schwarz, Katherine; Patzek, Tad & Silin, Dmitriy
System: The UNT Digital Library
Hierarchy of multiple many-body interaction scales in high-temperature superconductors (open access)

Hierarchy of multiple many-body interaction scales in high-temperature superconductors

To date, angle-resolved photoemission spectroscopy has been successful in identifying energy scales of the many-body interactions in correlated materials, focused on binding energies of up to a few hundred meV below the Fermi energy. Here, at higher energy scale, we present improved experimental data from four families of high-T{sub c} superconductors over a wide doping range that reveal a hierarchy of many-body interaction scales focused on: the low energy anomaly ('kink') of 0.03-0.09eV, a high energy anomaly of 0.3-0.5eV, and an anomalous enhancement of the width of the LDA-based CuO{sub 2} band extending to energies of {approx} 2 eV. Besides their universal behavior over the families, we find that all of these three dispersion anomalies also show clear doping dependence over the doping range presented.
Date: December 21, 2006
Creator: Hussain, Zahid; Meevasana, W.; Zhou, X. J.; Sahrakorpi, S.; Lee, W. S.; Yang, W. L. et al.
System: The UNT Digital Library
Test of weak and strong factorization in nucleus-nucleuscollisions atseveral hundred MeV/nucleon (open access)

Test of weak and strong factorization in nucleus-nucleuscollisions atseveral hundred MeV/nucleon

Total and partial charge-changing cross sections have been measured for argon projectiles at 400 MeV/nucleon in carbon, aluminum, copper, tin and lead targets; cross sections for hydrogen were also obtained, using a polyethylene target. The validity of weak and strong factorization properties has been investigated for partial charge-changing cross sections; preliminary cross section values obtained for carbon, neon and silicon at 290 and 400 MeV/nucleon and iron at 400 MeV/nucleon, in carbon, aluminum, copper, tin and lead targets have been also used for testing these properties. Two different analysis methods were applied and both indicated that these properties are valid, without any significant difference between weak and strong factorization. The factorization parameters have then been calculated and analyzed in order to find some systematic behavior useful for modeling purposes.
Date: June 21, 2006
Creator: La Tessa, Chiara; Sihver, Lembit; Zeitlin, Cary; Miller, Jack; Guetersloh, Stephen; Heilbronn, Lawrence et al.
System: The UNT Digital Library
SOLVING THE STAND-OFF PROBLEM FOR MAGNETIZED TARGET FUSION: PLASMA STREAMS AS DISPOSABLE ELECTRODES, PLUS A LOCAL SPHERICAL BLANKET (open access)

SOLVING THE STAND-OFF PROBLEM FOR MAGNETIZED TARGET FUSION: PLASMA STREAMS AS DISPOSABLE ELECTRODES, PLUS A LOCAL SPHERICAL BLANKET

In a fusion reactor based on the Magnetized Target Fusion approach, the permanent power supply has to deliver currents up to a few mega-amperes to the target dropped into the reaction chamber. All the structures situated around the target will be destroyed after every pulse and have to be replaced at a frequency of 1 to 10 Hz. In this paper, an approach based on the use of spherical blanket surrounding the target, and pulsed plasma electrodes connecting the target to the power supply, is discussed. A brief physic analysis of the processes associated with creation of plasma electrodes is discussed.
Date: March 21, 2006
Creator: Ryutov, D. D. & Thio, Y. F.
System: The UNT Digital Library
Synthesis and magnetic properties of cerium macrocyclic complexeswith tmtaaH2, tetramethyldibenzotetraaza[14]-annulene (open access)

Synthesis and magnetic properties of cerium macrocyclic complexeswith tmtaaH2, tetramethyldibenzotetraaza[14]-annulene

The complexes [Ce(tmtaa)2], [Ce(tmtaa)(tmtaaH)]and[Ce2(tmtaa)3(thf)2]are obtained from Ce[N(SiMe3)2]3 and tmtaaH2, themacrocyclic ligand 6,8,15,17-tetramethyldibenzotetraaza[14]-annulene,depending on the stoichiometry, solvent and temperature. The crystalstructure of Ce(tmtaa)2 is isostructural with Zr(tmtaa)2, howevermagnetic susceptibility measurements in the range 5-300 K show thatCe(tmtaa)2 is not diamagnetic, but is a temperature-independentparamagnet (TIP), similar to Ce(cot)2, cerocene.
Date: February 21, 2006
Creator: Walter, Marc D.; Fandos, Rosa & Andersen, Richard A.
System: The UNT Digital Library
X-ray survival characteristics and genetic analysis for nineSaccharomyces deletion mutants that affect radiation sensitivity (open access)

X-ray survival characteristics and genetic analysis for nineSaccharomyces deletion mutants that affect radiation sensitivity

We examine ionizing radiation (IR) sensitivity and epistasisrelationships of several Saccharomyces mutants affectingpost-translational modifications of histones H2B and H3. Mutantsbre1delta, lge1delta, and rtf1delta, defective in histone H2B lysine 123ubiquitination, show IR sensitivity equivalent to that of the dot1deltamutant that we reported on earlier, consistent with published findingsthat Dot1p requires H2B K123 ubiquitination to fully methylate histone H3K79. This implicates progressive K79 methylation rather thanmono-methylation in IR resistance. The set2delta mutant, defective in H3K36 methylation, shows mild IR sensitivity whereas mutants that abolishH3 K4 methylation resemble wild type. The dot1delta, bre1delta, andlge1delta mutants show epistasis for IR sensitivity. The paf1deltamutant, also reportedly defective in H2B K123 ubiquitination, confers nosensitivity. The rad6delta, rad51null, rad50delta, and rad9deltamutations are epistatic to bre1? and dot1delta, but rad18delta andrad5delta show additivity with bre1delta, dot1delta, and each other. Thebre1delta rad18delta double mutant resembles rad6delta in sensitivity;thus the role of Rad6p in ubiquitinating H2B accounts for its extrasensitivity compared to rad18delta. We conclude that IR resistanceconferred by BRE1 and DOT1 is mediated through homologous recombinationalrepair, not postreplication repair, and confirm findings of a G1checkpoint role for the RAD6/BRE1/DOT1 pathway.
Date: July 21, 2006
Creator: Game, John C.; Williamson, Marsha S. & Baccari, Clelia
System: The UNT Digital Library
Borehole Seismic Monitoring of Injected CO2 at the Frio Site (open access)

Borehole Seismic Monitoring of Injected CO2 at the Frio Site

As part of a small scale sequestration test (about 1500 tonsof CO2) in a saline aquifer, time-lapse borehole seismic surveys wereconducted to aid in characterization of subsurface CO2 distribution andmaterial property changes induced by the injected CO2. A VSP surveydemonstrated a large increase (about 75 percent) in seismic reflectivitydue to CO2 injection and allowed estimation of the spatial extent of CO2induced changes. A crosswell survey imaged a large seismic velocitydecrease (up to 500 m/s) within the injection interval and provided ahigh resolution image of this velocity change which maps the subsurfacedistribution of CO2 between two wells. Numerical modeling of the seismicresponse uses the crosswell measurements to show that this small CO2volume causes a large response in the seismic reflectivity. This resultdemonstrates that seismic detection of small CO2 volumes in salineaquifers is feasible and realistic.
Date: April 21, 2006
Creator: Daley, Thomas M.; Myer, Larry R.; Hoversten, G.M.; Peterson, JohnE. & Korneev, Valeri A.
System: The UNT Digital Library
K-alpha conversion efficiency measurments for x-ray scattering in inertial confinement fusion plasmas (open access)

K-alpha conversion efficiency measurments for x-ray scattering in inertial confinement fusion plasmas

The conversion efficiency of ultra short-pulse laser radiation to K-{alpha} x-rays has been measured for various chlorine-containing targets to be used as x-ray scattering probes of dense plasmas. The spectral and temporal properties of these sources will allow spectrally-resolved x-ray scattering probing with picosecond temporal resolution required for measuring the plasma conditions in inertial confinement fusion experiments. Simulations of x-ray scattering spectra from these plasmas show that fuel capsule density, capsule ablator density, and shock timing information may be inferred.
Date: November 21, 2006
Creator: Kritcher, A L; Neumayer, P; Urry, M K; Robey, H; Niemann, C; Landen, O L et al.
System: The UNT Digital Library
Undulator Background in the Final Focus Test Beam Experiment with Polarized Positrons (open access)

Undulator Background in the Final Focus Test Beam Experiment with Polarized Positrons

In the proposed E-166 experiment at SLAC, 50 GeV electrons pass through a helical undulator, and produce circularly polarized photons, which interact with a tungsten target and generate longitudinally polarized positrons. The background is an important issue for an experiment under consideration. To address this issue, simulations were performed with the code GEANT3 to model the production of secondary particles from high-energy electrons hitting an undulator. The energy density of photons generated at the target has been analyzed. Results of the simulations are presented and discussed.
Date: September 21, 2006
Creator: Batygin, Yuri K.
System: The UNT Digital Library
Tracking Code for Microwave Instability (open access)

Tracking Code for Microwave Instability

To study microwave instability the tracking code is developed. For bench marking, results are compared with Oide-Yokoya results [1] for broad-band Q = 1 impedance. Results hint to two possible mechanisms determining the threshold of instability.
Date: September 21, 2006
Creator: Heifets, S.
System: The UNT Digital Library
Influence of Dust Composition on Cloud Droplet Formation (open access)

Influence of Dust Composition on Cloud Droplet Formation

Previous studies suggest that interactions between dust particles and clouds are significant; yet the conditions where dust particles can serve as cloud condensation nuclei (CCN) are uncertain. Since major dust components are insoluble, the CCN activity of dust strongly depends on the presence of minor components. However, many minor components measured in dust particles are overlooked in cloud modeling studies. Some of these compounds are believed to be products of heterogeneous reactions involving carbonates. In this study, we calculate Kohler curves (modified for slightly soluble substances) for dust particles containing small amounts of K{sup +}, Mg{sup 2+}, or Ca{sup 2+} compounds to estimate the conditions where reacted and unreacted dust can activate. We also use an adiabatic parcel model to evaluate the influence of dust particles on cloud properties via water competition. Based on their bulk solubilities, K{sup +} compounds, MgSO{sub 4} x 7H{sub 2}O, Mg(NO{sub 3}){sub 2} x 6H{sub 2}O, and Ca(NO{sub 3}){sub 2} x 4H{sub 2}O are classified as highly soluble substances, which enable activation of fine dust. Slightly soluble gypsum and MgSO{sub 3} x 6H{sub 2}O, which may form via heterogeneous reactions involving carbonates, enable activation of particles with diameters between about 0.6 and 2 mm under …
Date: August 21, 2006
Creator: Kelly, J. T.; Chuang, C. C. & Wexler, A. S.
System: The UNT Digital Library
Portable, Low-cost NMR with Laser-Lathe Lithography Produced (open access)

Portable, Low-cost NMR with Laser-Lathe Lithography Produced

Nuclear Magnetic Resonance (NMR) is unsurpassed in its ability to non-destructively probe chemical identity. Portable, low-cost NMR sensors would enable on-site identification of potentially hazardous substances, as well as the study of samples in a variety of industrial applications. Recent developments in RF microcoil construction (i.e. coils much smaller than the standard 5 mm NMR RF coils), have dramatically increased NMR sensitivity and decreased the limits-of-detection (LOD). We are using advances in laser pantographic microfabrication techniques, unique to LLNL, to produce RF microcoils for field deployable, high sensitivity NMR-based detectors. This same fabrication technique can be used to produce imaging coils for MRI as well as for standard hardware shimming or 'ex-situ' shimming of field inhomogeneities typically associated with inexpensive magnets. This paper describes a portable NMR system based on a laser-fabricated microcoil and homebuilt probe design. For testing this probe, we used a hand-held 2 kg Halbach magnet that can fit into the palm of a hand, and an RF probe with laser-fabricated microcoils. The focus of the paper is on the evaluation of the microcoils, RF probe, and first generation gradient coils. The setup of this system, initial results, sensitivity measurements, and future plans are discussed. The results, …
Date: December 21, 2006
Creator: Herberg, J. L.; Demas, V.; Malba, V.; Bernhardt, A.; Evans, L.; Harvey, C. et al.
System: The UNT Digital Library
Coherent Beam Stability in the Low Momentum Compaction Lattice (open access)

Coherent Beam Stability in the Low Momentum Compaction Lattice

The beam dynamics for a quasi-isochronous lattice differs from that in the usual case of a lattice with a large positive momentum compaction factor. In particular, the quasi-isochronous lattice allows us to double the number of bunches which may be an attractive option for colliders. However, microwave instability and, as we show, longitudinal head-tail instability set the threshold for the beam current.
Date: June 21, 2006
Creator: Heifets, S. & Novokhatski, A.
System: The UNT Digital Library
Multiscale Modeling with Carbon Nanotubes (open access)

Multiscale Modeling with Carbon Nanotubes

Technologically important nanomaterials come in all shapes and sizes. They can range from small molecules to complex composites and mixtures. Depending upon the spatial dimensions of the system and properties under investigation computer modeling of such materials can range from equilibrium and nonequilibrium Quantum Mechanics, to force-field-based Molecular Mechanics and kinetic Monte Carlo, to Mesoscale simulation of evolving morphology, to Finite-Element computation of physical properties. This brief review illustrates some of the above modeling techniques through a number of recent applications with carbon nanotubes: nano electromechanical sensors (NEMS), chemical sensors, metal-nanotube contacts, and polymer-nanotube composites.
Date: February 21, 2006
Creator: Maiti, A
System: The UNT Digital Library
A Multigroup diffusion solver using pseudo transient continuation for a radiation-hydrodynamic code with patch-based AMR (open access)

A Multigroup diffusion solver using pseudo transient continuation for a radiation-hydrodynamic code with patch-based AMR

We present a scheme to solve the nonlinear multigroup radiation diffusion (MGD) equations. The method is incorporated into a massively parallel, multidimensional, Eulerian radiation-hydrodynamic code with adaptive mesh refinement (AMR). The patch-based AMR algorithm refines in both space and time creating a hierarchy of levels, coarsest to finest. The physics modules are time-advanced using operator splitting. On each level, separate 'level-solve' packages advance the modules. Our multigroup level-solve adapts an implicit procedure which leads to a two-step iterative scheme that alternates between elliptic solves for each group with intra-cell group coupling. For robustness, we introduce pseudo transient continuation ({Psi}tc). We analyze the magnitude of the {Psi}tc parameter to ensure positivity of the resulting linear system, diagonal dominance and convergence of the two-step scheme. For AMR, a level defines a subdomain for refinement. For diffusive processes such as MGD, the refined level uses Dirichet boundary data at the coarse-fine interface and the data is derived from the coarse level solution. After advancing on the fine level, an additional procedure, the sync-solve (SS), is required in order to enforce conservation. The MGD SS reduces to an elliptic solve on a combined grid for a system of G equations, where G is the …
Date: September 21, 2006
Creator: Shestakov, A I & Offner, S R
System: The UNT Digital Library
Immiscibility in the Nickel Ferrite-Zinc Ferrite Spinel Binary (open access)

Immiscibility in the Nickel Ferrite-Zinc Ferrite Spinel Binary

Immiscibility in the trevorite (NiFe{sub 2}O{sub 4}) - franklinite (ZnFe{sub 2}O{sub 4}) spinel binary is investigated by reacting 1:1:2 molar ratio mixtures of NiO, ZnO and Fe{sub 2}O{sub 3} in a molten salt solvent at temperatures in the range 400-1000 C. Single phase stability is demonstrated down to about 730 C (the estimated consolute solution temperature, T{sub cs}). A miscibility gap/solvus exists below Tcs. The solvus becomes increasingly asymmetric at lower temperatures and extrapolates to n - values = 0.15, 0.8 at 300 C. A thermodynamic analysis, which accounts for changes in configurational and magnetic ordering entropies during cation mixing, predicts solvus phase compositions at room temperature in reasonable agreement with those determined by extrapolation of experimental results. The delay between disappearance of magnetic ordering above T{sub C} = 590 C (for NiFe{sub 2}O{sub 4}) and disappearance of a miscibility gap at T{sub cs} is explained by the persistence of long-range ordering correlations in a quasi-paramagnetic region above T{sub C}.
Date: June 21, 2006
Creator: Ziemniak, SE; Gaddipati, AR; Sander, PC & Rice, SB
System: The UNT Digital Library
Photonic Equation of Motion With Application to the Lamb Shift (open access)

Photonic Equation of Motion With Application to the Lamb Shift

A photonic equation of motion is proposed which is the scalar product of four-vectors and therefore a Lorentz invariant. A photonic equation of motion, which has not been heretofore established in quantum electrodynamics (QED), would capture the quantum nature of light but yet not have the standard field-operator form, thereby making practical calculations easier to perform. The equation of motion proposed here is applied to the Lamb shift. No divergences exist, and the result agrees with the observed Lamb shift for the 1S{sub 1/2} state of hydrogen within experimental error.
Date: December 21, 2006
Creator: Ritchie, A. B.
System: The UNT Digital Library
Predicting dissolution patterns in variable aperture fractures: 1. Development and evaluation of an enhanced depth-averaged computational model (open access)

Predicting dissolution patterns in variable aperture fractures: 1. Development and evaluation of an enhanced depth-averaged computational model

Water-rock interactions within variable-aperture fractures can lead to dissolution of fracture surfaces and local alteration of fracture apertures, potentially transforming the transport properties of the fracture over time. Because fractures often provide dominant pathways for subsurface flow and transport, developing models that effectively quantify the role of dissolution on changing transport properties over a range of scales is critical to understanding potential impacts of natural and anthropogenic processes. Dissolution of fracture surfaces is controlled by surface-reaction kinetics and transport of reactants and products to and from the fracture surfaces. We present development and evaluation of a depth-averaged model of fracture flow and reactive transport that explicitly calculates local dissolution-induced alterations in fracture apertures. The model incorporates an effective mass transfer relationship that implicitly represents the transition from reaction-limited dissolution to transport-limited dissolution. We evaluate the model through direct comparison to previously reported physical experiments in transparent analog fractures fabricated by mating an inert, transparent rough surface with a smooth single crystal of potassium dihydrogen phosphate (KDP), which allowed direct measurement of fracture aperture during dissolution experiments using well-established light transmission techniques [Detwiler, et al., 2003]. Comparison of experiments and simulations at different flow rates demonstrate the relative impact of the …
Date: April 21, 2006
Creator: Detwiler, R L & Rajaram, H
System: The UNT Digital Library