Noise Considerations in Nuclear Pulse Amplifiers (open access)

Noise Considerations in Nuclear Pulse Amplifiers

The effects of certain pulse-shaping networks on the signal-to-noise ratio of a nuclear pulse amplifier were considered. The shaping networks discussed are: equal RC-integrating and RC-differentiating time constant, single- delay-line clipper and RC integrator, and doubledelay-line clipper and RC integrator. The effects of these networks on the signal, when high count rates and overload pulses are present, were also considered. Equations and curves were developed for the energy resolution (signal-tonoise ratio) and resolving time (related to the ability to operate at high counting rates) of the networks. Experimental results are shown for the energy resolution of the types of pulse- shaping networks considered. (auth)
Date: December 20, 1961
Creator: Landis, D. A.
System: The UNT Digital Library
Masters Thesis- Criticality Alarm System Design Guide with Accompanying Alarm System Development for the Radioisotope Production Laboratory in Richland, Washington (open access)

Masters Thesis- Criticality Alarm System Design Guide with Accompanying Alarm System Development for the Radioisotope Production Laboratory in Richland, Washington

A detailed instructional manual was created to guide criticality safety engineers through the process of designing a criticality alarm system (CAS) for Department of Energy (DOE) hazard class 1 and 2 facilities. Regulatory and technical requirements were both addressed. A list of design tasks and technical subtasks are thoroughly analyzed to provide concise direction for how to complete the analysis. An example of the application of the design methodology, the Criticality Alarm System developed for the Radioisotope Production Laboratory (RPL) of Richland, Washington is also included. The analysis for RPL utilizes the Monte Carlo code MCNP5 for establishing detector coverage in the facility. Significant improvements to the existing CAS were made that increase the reliability, transparency, and coverage of the system.
Date: December 20, 2009
Creator: Greenfield, Bryce A.
System: The UNT Digital Library
Dynamical Study of Guest-Host Orientational Interaction in LiquidCrystalline Materials (open access)

Dynamical Study of Guest-Host Orientational Interaction in LiquidCrystalline Materials

Guest-host interaction has long been a subject of interest in many disciplines. Emphasis is often on how a small amount of guest substance could significantly affect the properties of a host material. This thesis describe our work in studying a guest-host effect where dye-doping of liquid crystalline materials greatly enhances the optical Kerr nonlinearity of the material. The dye molecules, upon excitation and via intermolecular interaction, provides an extra torque to reorient the host molecules, leading to the enhanced optical Kerr nonlinearity. We carried out a comprehensive study on the dynamics of the photoexcited dye-doped liquid crystalline medium. Using various experimental techniques, we separately characterized the dynamical responses of the relevant molecular species present in the medium following photo-excitation, and thus were able to follow the transient process in which photo-excitation of the dye molecules exert through guest-host interaction a net torque on the host LC material, leading to the observed enhanced molecular reorientation. We also observed for the first time the enhanced reorientation in a pure liquid crystal system, where the guest population is created through photoexcitation of the host molecules themselves. Experimental results agree quantitatively with the time-dependent theory based on a mean-field model of the guest-host interaction.
Date: December 20, 2005
Creator: Truong, Thai Viet
System: The UNT Digital Library
Cobalt Nanocrystals as Starting Materials for Shape Modificationand Assembly Formation (open access)

Cobalt Nanocrystals as Starting Materials for Shape Modificationand Assembly Formation

Surfactant-coated cobalt nanocrystals can be prepared with areasonable degree of control over particle size and shape using athermolytic route. The small crystallite size, enhanced reactivity andtunable interparticle interactions enable use of this material asstarting material for demonstration of achievement of novel structuresusing extremely simple solution-based approaches. In particular,formation of hollow cobalt sulfide nanocrystals upon chemicalmodification and emergence of long-range orientational order upondrying-mediated assembly of cobalt nanocrystals is reportedhere.Colloidal preparation of Co nanocrystals has been well-studied.Here, we emphasize general principles and crystallographic/morphologicalcharacterization of disk-shaped hcp-Co nanocrystals. Use of surfactantmolecules enables achievement of multiple morphologies in one syntheticsystem.Formation of hollow structures upon in-solution sulfidation of Conanocrystals is presented and discussed. A Kirkendall-type effect,involving dominant outward mass transport during formation of the ionicshell material explains the results naturally. It is expected that thisphenomenon will generalize extensively to formation of hollow structuresof an enormous variety of compositions. Detailed study of particlemorphology as a function of reaction conditions suggest phenomena likelyto be generally relevant to use of this approach. A short report ofcrystallographic co-alignment into vortex-like structures is alsoprovided. Our current best picture of this process involves an interplayof packing and magnetic interactions between facetedparticles.
Date: December 20, 2005
Creator: Erdonmez, Can Kerem
System: The UNT Digital Library
Aspects of the SrO-CuO-TiO2 Ternary System Related to the Deposition of SrTiO3 and Copper-Doped SrTiO3 Thin-Film Buffer Layers (open access)

Aspects of the SrO-CuO-TiO2 Ternary System Related to the Deposition of SrTiO3 and Copper-Doped SrTiO3 Thin-Film Buffer Layers

YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO) coated conductors are promising materials for large-scale superconductivity applications. One version of a YBCO coated conductor is based on ion beam assisted deposition (IBAD) of magnesium oxide (MgO) onto polycrystalline metal substrates. SrTiO{sub 3} (STO) is often deposited by physical vapor deposition (PVD) methods as a buffer layer between the YBCO and IBAD MgO due to its chemical stability and lattice mismatch of only {approx}1.5% with YBCO. In this work, some aspects of the stability of STO with respect to copper (Cu) and chemical solution deposition of STO on IBAD MgO templates were examined. Solubility limits of Cu in STO were established by processing Cu-doped STO powders by conventional bulk preparation techniques. The maximum solubility of Cu in STO was {approx}1% as determined by transmission electron microscopy (TEM) and Rietveld refinements of x-ray diffraction (XRD) data. XRD analysis, performed in collaboration with NIST, on powder compositions on the STO/SrCuO{sub 2} tie line did not identify any ternary phases. SrCu{sub 0.10}Ti{sub 0.90}O{sub y} buffer layers were prepared by pulsed laser deposition (PLD) and CSD on IBAD MgO flexible metallic textured tapes. TEM analysis of a {approx}100 nm thick SrCu{sub 0.10}Ti{sub 0.90}O{sub y} buffer layer deposited by …
Date: December 20, 2004
Creator: Ayala, A.
System: The UNT Digital Library