61 Matching Results

Results open in a new window/tab.

Analysis of Current Distribution in Electrolytic Cells With Flowing Mercury Cathodes (open access)

Analysis of Current Distribution in Electrolytic Cells With Flowing Mercury Cathodes

An idealized model is postulated embodying the essential features of industrial caustic-chlorine cells with horizontal flowing-mercury cathodes. This model is examined in detail, and relations expressing the local anode potential, cathode potential, and ohmic potential drop in the electrolyte in terms of local current density and other parameters are established. These relations are combined to give a system of equations relating current density at any location along the cell to applied total potential and to operating conditions in the cell upstream of the point in question. Numerical solutions of these equations for several cases of cell operating conditions are carried out on a digital computing machine. The effects of changes in operating parameters upon average current density, individual electrode potentials, and current distribution are evaluated. (auth)
Date: July 19, 1960
Creator: Grens, E. A., II
System: The UNT Digital Library
Benchmarking: More Aspects of High Performance Computing (open access)

Benchmarking: More Aspects of High Performance Computing

The original HPL algorithm makes the assumption that all data can be fit entirely in the main memory. This assumption will obviously give a good performance due to the absence of disk I/O. However, not all applications can fit their entire data in memory. These applications which require a fair amount of I/O to move data to and from main memory and secondary storage, are more indicative of usage of an Massively Parallel Processor (MPP) System. Given this scenario a well designed I/O architecture will play a significant part in the performance of the MPP System on regular jobs. And, this is not represented in the current Benchmark. The modified HPL algorithm is hoped to be a step in filling this void. The most important factor in the performance of out-of-core algorithms is the actual I/O operations performed and their efficiency in transferring data to/from main memory and disk, Various methods were introduced in the report for performing I/O operations. The I/O method to use depends on the design of the out-of-core algorithm. Conversely, the performance of the out-of-core algorithm is affected by the choice of I/O operations. This implies, good performance is achieved when I/O efficiency is closely tied …
Date: December 19, 2004
Creator: Ravindrudu, Rahul
System: The UNT Digital Library
Chromatographic Separations of Enantiomers and Underivatized Oligosaccharides (open access)

Chromatographic Separations of Enantiomers and Underivatized Oligosaccharides

My graduate research has focused on separation science and bioanalytical analysis, which emphasized in method development. It includes three major areas: enantiomeric separations using high performance liquid chromatography (HPLC), Super/subcritical fluid chromatography (SFC), and capillary electrophoresis (CE); drug-protein binding behavior studies using CE; and carbohydrate analysis using liquid chromatograph-electrospray ionization mass spectrometry (LC-ESI-MS). Enantiomeric separations continue to be extremely important in the pharmaceutical industry. An in-depth evaluation of the enantiomeric separation capabilities of macrocyclic glycopeptides CSPs with SFC mobile phases was investigated using a set of over 100 chiral compounds. It was found that the macrocyclic based CSPs were able to separate enantiomers of various compounds with different polarities and functionalities. Seventy percent of all separations were achieved in less than 4 min due to the high flow rate (4.0 ml/min) that can be used in SFC. Drug-protein binding is an important process in determining the activity and fate of a drug once it enters the body. Two drug/protein systems have been studied using frontal analysis CE method. More sensitive fluorescence detection was introduced in this assay, which overcame the problem of low sensitivity that is common when using UV detection for drug-protein studies. In addition, the first usage of …
Date: December 19, 2004
Creator: Liu, Ying
System: The UNT Digital Library
Considering value of information when using CFD in design (open access)

Considering value of information when using CFD in design

This thesis presents an approach to find lower resolution CFD models that can accurately lead a designer to a correct decision at a lower computational cost. High-fidelity CFD models often contain too much information and come at a higher computational cost, limiting the designs a designer can test and how much optimization can be performed on the design. Lower model resolution is commonly used to reduce computational time. However there are no clear guidelines on how much model accuracy is required. Instead experience and intuition are used to select an appropriate lower resolution model. This thesis presents an alternative to this ad hoc method by considering the added value of the addition information provided by increasing accurate and more computationally expensive models.
Date: December 19, 2009
Creator: Misra, John Satprim
System: The UNT Digital Library
Coupling Temperature Control with Electrochemically Modulated Liquid Chromatography: Fundamental Aspects and Applications (open access)

Coupling Temperature Control with Electrochemically Modulated Liquid Chromatography: Fundamental Aspects and Applications

The primary focus of the doctoral research presented herein has been the integration of temperature control into electrochemically modulated liquid chromatography (EMLC). The combination of temperature control and the tunable characteristics of carbonaceous EMLC stationary phases have been invaluable in deciphering the subtleties of the retention mechanism. The effects of temperature and E{sub app} on the retention of several naphthalene disulfonates were therefore examined by the van' Hoff relationship. The results indicate that while the retention of both compounds is exothermic at levels comparable to that in many reversed-phase separations, the potential dependence of the separation is actually entropically affected in a manner paralleling that of several classical ion exchange systems. Furthermore, the retention of small inorganic anions at constant temperature also showed evidence of an ion exchange type of mechanism. While a more complete mechanistic description will come from examining the thermodynamics of retention for a wider variety of analytes, this research has laid the groundwork for full exploitation of temperature as a tool to develop retention rules for EMLC. Operating EMLC at elevated temperature and flow conditions has decreased analysis time and has enabled the separation of analytes not normally achievable on a carbon stationary phase. The separation …
Date: December 19, 2004
Creator: Ponton, Lisa M.
System: The UNT Digital Library
Critical Behavior of Thermal Expansion and Magnetostriction in the Vicinity of the First order transition at the Curie Point of Gd5(SixGe1-x)4 (open access)

Critical Behavior of Thermal Expansion and Magnetostriction in the Vicinity of the First order transition at the Curie Point of Gd5(SixGe1-x)4

Thermal expansion (TE) and magnetostriction (MS) measurements have been conducted for Gd{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} with a series of x values to study its critical behavior in the vicinity of transition temperatures. It was found that the Curie temperature of Gd{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} for x 0 {approx} 0.5 is dependent on magnetic field, direction of change of temperature (Tc on cooling was lower than Tc on heating), purity of Gd starting material, compositions, material preparation methods, and also can be triggered by the external magnetic field with a different dT/dB rate for different x values. For Gd{sub 5}(Si{sub 1.95}Ge{sub 2.05}), Gd{sub 5}(Si{sub 2}Ge{sub 2}), Gd{sub 5}(Si{sub 2.09}Ge{sub 1.91}), it was also found that the transition is a first order magneto-structural transition, which means the magnetic transition and crystalline structure transition occur simultaneously, and completely reversible. Temperature hysteresis and phase coexistence have been found to confirm that it is a first order transformation. While for Gd{sub 5}(Si{sub 0.15}Ge{sub 3.85}), it is partially reversible at some temperature range between the antiferromagnetic and the ferromagnetic state. For Gd{sub 5}(Si{sub 2.3}Ge{sub 1.7}) and Gd{sub 5}(Si{sub 3}Ge{sub 1}), it was a second order transformation between the paramagnetic and ferromagnetic state, because no …
Date: December 19, 2004
Creator: Han, Mangui
System: The UNT Digital Library
Development of Chiral LC-MS Methods for small Molecules and Their Applications in the Analysis of Enantiomeric Composition and Pharmacokinetic Studies (open access)

Development of Chiral LC-MS Methods for small Molecules and Their Applications in the Analysis of Enantiomeric Composition and Pharmacokinetic Studies

The purpose of this research was to develop sensitive LC-MS methods for enantiomeric separation and detection, and then apply these methods for determination of enantiomeric composition and for the study of pharmacokinetic and pharmacodynamic properties of a chiral nutraceutical. Our first study, evaluated the use of reverse phase and polar organic mode for chiral LC-API/MS method development. Reverse phase methods containing high water were found to decrease ionization efficiency in electrospray, while polar organic methods offered good compatibility and low limits of detection with ESI. The use of lower flow rates dramatically increased the sensitivity by an order of magnitude. Additionally, for rapid chiral screening, the coupled Chirobiotic column afforded great applicability for LC-MS method development. Our second study, continued with chiral LC-MS method development in this case for the normal phase mode. Ethoxynonafluorobutane, a fluorocarbon with low flammability and no flashpoint, was used as a substitute solvent for hexane/heptane mobile phases for LC-APCI/MS. Comparable chromatographic resolutions and selectivities were found using ENFB substituted mobile phase systems, although, peak efficiencies were significantly diminished. Limits of detection were either comparable or better for ENFB-MS over heptane-PDA detection. The miscibility of ENFB with a variety of commonly used organic modifiers provided for …
Date: December 19, 2004
Creator: Desai, Meera Jay
System: The UNT Digital Library
Development of colorimetric solid Phase Extraction (C-SPE) for in-flight Monitoring of spacecraft Water Supplies (open access)

Development of colorimetric solid Phase Extraction (C-SPE) for in-flight Monitoring of spacecraft Water Supplies

Although having recently been extremely successful gathering data on the surface of Mars, robotic missions are not an effective substitute for the insight and knowledge about our solar system that can be gained though first-hand exploration. Earlier this year, President Bush presented a ''new course'' for the U.S. space program that shifts NASA's focus to the development of new manned space vehicles to the return of humans to the moon. Re-establishing the human presence on the moon will eventually lead to humans permanently living and working in space and also serve as a possible launch point for missions into deeper space. There are several obstacles to the realization of these goals, most notably the lack of life support and environmental regeneration and monitoring hardware capable of functioning on long duration spaceflight. In the case of the latter, past experience on the International Space Station (ISS), Mir, and the Space Shuttle has strongly underscored the need to develop broad spectrum in-flight chemical sensors that: (1) meet current environmental monitoring requirements on ISS as well as projected requirements for future missions, and (2) enable the in-situ acquisition and analysis of analytical data in order to further define on-orbit monitoring requirements. Additionally, systems …
Date: December 19, 2004
Creator: Gazda, Daniel Bryan
System: The UNT Digital Library
Direct analysis of samples by mass spectrometry: From elements to bio-molecules using laser ablation inductively couple plasma mass spectrometry and laser desorption/ionization mass spectrometry (open access)

Direct analysis of samples by mass spectrometry: From elements to bio-molecules using laser ablation inductively couple plasma mass spectrometry and laser desorption/ionization mass spectrometry

Mass spectrometric methods that are able to analyze solid samples or biological materials with little or no sample preparation are invaluable to science as well as society. Fundamental research that has discovered experimental and instrumental parameters that inhibit fractionation effects that occur during the quantification of elemental species in solid samples by laser ablation inductively coupled plasma mass spectrometry is described. Research that determines the effectiveness of novel laser desorption/ionization mass spectrometric methods for the molecular analysis of biological tissues at atmospheric pressure and at high spatial resolution is also described. A spatial resolution is achieved that is able to analyze samples at the single cell level.
Date: August 19, 2009
Creator: Perdian, David C.
System: The UNT Digital Library
Drama in Dynamics: Boom, Splash, and Speed (open access)

Drama in Dynamics: Boom, Splash, and Speed

The full nature of chemistry and physics cannot be captured by static calculations alone. Dynamics calculations allow the simulation of time-dependent phenomena. This facilitates both comparisons with experimental data and the prediction and interpretation of details not easily obtainable from experiments. Simulations thus provide a direct link between theory and experiment, between microscopic details of a system and macroscopic observed properties. Many types of dynamics calculations exist. The most important distinction between the methods and the decision of which method to use can be described in terms of the size and type of molecule/reaction under consideration and the type and level of accuracy required in the final properties of interest. These considerations must be balanced with available computational codes and resources as simulations to mimic ''real-life'' may require many time steps. As indicated in the title, the theme of this thesis is dynamics. The goal is to utilize the best type of dynamics for the system under study while trying to perform dynamics in the most accurate way possible. As a quantum chemist, this involves some level of first principles calculations by default. Very accurate calculations of small molecules and molecular systems are now possible with relatively high-level ab initio …
Date: December 19, 2004
Creator: Netzloff, Heather M.
System: The UNT Digital Library
Efficient Video Similarity Measurement and Search (open access)

Efficient Video Similarity Measurement and Search

The amount of information on the world wide web has grown enormously since its creation in 1990. Duplication of content is inevitable because there is no central management on the web. Studies have shown that many similar versions of the same text documents can be found throughout the web. This redundancy problem is more severe for multimedia content such as web video sequences, as they are often stored in multiple locations and different formats to facilitate downloading and streaming. Similar versions of the same video can also be found, unknown to content creators, when web users modify and republish original content using video editing tools. Identifying similar content can benefit many web applications and content owners. For example, it will reduce the number of similar answers to a web search and identify inappropriate use of copyright content. In this dissertation, they present a system architecture and corresponding algorithms to efficiently measure, search, and organize similar video sequences found on any large database such as the web.
Date: December 19, 2002
Creator: Cheung, Sen-Cheng S.
System: The UNT Digital Library
Energy Spread Reduction of Electron Beams Produced via Laser Wake (open access)

Energy Spread Reduction of Electron Beams Produced via Laser Wake

Laser wakefield acceleration of electrons holds great promise for producing ultra-compact stages of GeV scale, high quality electron beams for applications such as x-ray free electron lasers and high energy colliders. Ultra-high intensity laser pulses can be self-guided by relativistic plasma waves over tens of vacuum diffraction lengths, to give >1 GeV energy in cm-scale low density plasma using ionization-induced injection to inject charge into the wake at low densities. This thesis describes a series of experiments which investigates the physics of LWFA in the self-guided blowout regime. Beginning with high density gas jet experiments the scaling of the LWFA-produced electron beam energy with plasma electron density is found to be in excellent agreement with both phenomenological theory and with 3-D PIC simulations. It is also determined that self-trapping of background electrons into the wake exhibits a threshold as a function of the electron density, and at the densities required to produce electron beams with energies exceeding 1 GeV a different mechanism is required to trap charge into low density wakes. By introducing small concentrations of high-Z gas to the nominal He background the ionization-induced injection mechanism is enabled. Electron trapping is observed at densities as low as 1.3 x …
Date: March 19, 2012
Creator: Pollock, B.
System: The UNT Digital Library
An Enquiry Concerning Charmless Semileptonic Decays of Bottom Mesons (open access)

An Enquiry Concerning Charmless Semileptonic Decays of Bottom Mesons

The branching fractions for the decays B {yields} P{ell}{nu}{sub {ell}}, where P are the pseudoscalar charmless mesons {pi}{sup {+-}}, {pi}{sup 0}, {eta} and {eta}{prime} and {ell} is an electron or muon, are measured with B{sup 0} and B{sup {+-}} mesons found in the recoil of a second B meson decaying as B {yields} D{ell}{nu}{sub {ell}} or B {yields} D*{ell}{nu}{sub {ell}}. The measurements are based on a data set of 348 fb{sup -1} of e{sup +}e{sup -} collisions at {radical}s = 10.58 GeV recorded with the BABAR detector. Assuming isospin symmetry, measured pionic branching fractions are combined into {Beta}(B{sup 0} {yields} {pi}{sup -}{ell}{sup +}{nu}{sub {ell}}) = (1.54 {+-} 0.17{sub (stat)} {+-} 0.09{sub (syst)}) x 10{sup -4}. First evidence of the B{sup +} {yields} {eta}{ell}{sup +}{nu}{sub {ell}} decay is seen; its branching fraction is measured to be {Beta}(B{sup +} {yields} {eta}{ell}{sup +}{nu}{sub {ell}}) = (0.64 {+-} 0.20{sub (stat)} {+-} 0.03{sub (syst)}) x 10{sup -4}. It is determined that {Beta}(B{sup +} {yields} {eta}{prime}{ell}{sup +}{nu}{sub {ell}}) < 0.47 x 10{sup -4} to 90% confidence. Partial branching fractions for the pionic decays in ranges of the momentum transfer and various published calculations of the B {yields} {pi} hadronic form factor are used to obtain values …
Date: September 19, 2008
Creator: Chaisanguanthum, Kris Somboon & /SLAC, /Harvard U.
System: The UNT Digital Library
Evaluation of bisphenol E cyanate ester for the resin-injection repair of advanced composites (open access)

Evaluation of bisphenol E cyanate ester for the resin-injection repair of advanced composites

This thesis is a compilation of a general introduction and literature review that ties together the subsequent chapters which consist of two journal articles that have yet to be submitted for publication. The overall topic relates to the evaluation and application of a new class of cyanate ester resin with unique properties that lend it applicable to use as a resin for injection repair of high glass transition temperature polymer matrix composites. The first article (Chapter 2) details the evaluation and optimization of adhesive properties of this cyanate ester and alumina nanocomposites under different conditions. The second article (Chapter 3) describes the development and evaluation of an injection repair system for repairing delaminations in polymer matrix composites.
Date: December 19, 2009
Creator: Lio, Wilber Yaote
System: The UNT Digital Library
Fabrication of Ceramic Layer-by-Layer Infrared Wavelength Photonic Band Gap Crystals (open access)

Fabrication of Ceramic Layer-by-Layer Infrared Wavelength Photonic Band Gap Crystals

Photonic band gap (PBG) crystals, also known as photonic crystals, are periodic dielectric structures which form a photonic band gap that prohibit the propagation of electromagnetic (EM) waves of certain frequencies at any incident angles. Photonic crystals have several potential applications including zero-threshold semiconductor lasers, the inhibition of spontaneous emission, dielectric mirrors, and wavelength filters. If defect states are introduced in the crystals, light can be guided from one location to another or even a sharp bending of light in micron scale can be achieved. This generates the potential for optical waveguide and optical circuits, which will contribute to the improvement in the fiber-optic communications and the development of high-speed computers.
Date: December 19, 2004
Creator: Kang, Henry Hao-Chuan
System: The UNT Digital Library
FY02 Engineering Technology Reports Volume 2: LDRD (open access)

FY02 Engineering Technology Reports Volume 2: LDRD

This report summarizes the science and technology research and development efforts in Lawrence Livermore National Laboratory's Engineering Directorate for FY2002, and exemplifies Engineering's 50-year history of developing the technologies needed to support the Laboratory's missions. Engineering has been a partner in every major program and project at the Laboratory throughout its existence and has prepared for this role with a skilled workforce and the technical resources developed through venues like the Laboratory Directed Research and Development Program (LDRD). This accomplishment is well summarized by Engineering's mission: ''To make programs succeed today and to ensure the vitality of the Laboratory tomorrow.'' Engineering's investment in new technologies is carried out through two programs, the ''Tech Base'' program (Volume I) and the LDRD program (Volume II). This report summarizes the LDRD portion of Engineering's Technology Program. LDRD is the vehicle for researching and developing those technologies and competencies that are cutting edge, or that require a significant level of research, or contain some unknown that needs to be fully understood. Tech Base is used to apply those technologies, or adapt them to a Laboratory need. The term commonly used for Tech Base projects is ''reduction to practice.'' Therefore, the LDRD report covered here …
Date: May 19, 2003
Creator: Minichino, C & Meeker, D
System: The UNT Digital Library
Gas Sensors Based on Ceramic p-n Heterocontacts (open access)

Gas Sensors Based on Ceramic p-n Heterocontacts

Ceramic p-n heterocontacts based on CuO/ZnO were successfully synthesized and a systematic study of their hydrogen sensitivity was conducted. The sensitivity and response rates of CuO/ZnO sensors were studied utilizing current-voltage, current-time, and impedance spectroscopy measurements. The heterocontacts showed well-defined rectifying characteristics and were observed to detect hydrogen via both dc and ac measurements. Surface coverage data were derived from current-time measurements which were then fit to a two-site Langmuir adsorption model quite satisfactorily. The fit suggested that there should be two energetically different adsorption sites in the system. The heterocontacts were doped in an attempt to increase the sensitivity and the response rate of the sensor. First, the effects of doping the p-type (CuO) on the sensor characteristics were investigated. Doping the p-type CuO with both acceptor and isovalent dopants greatly improved the hydrogen sensitivity. The sensitivity of pure heterocontact observed via I-V measurements was increased from {approx}2.3 to {approx}9.4 with Ni doping. Dopants also enhanced the rectifying characteristics of the heterocontacts. Small amounts of Li addition were shown to decrease the reverse bias (saturation) current to 0.2 mA at a bias level of -5V. No unambiguous trends were observed between the sensitivity, the conductivity, and the density of …
Date: December 19, 2004
Creator: Aygun, Seymen Murat
System: The UNT Digital Library
Gas-Solid Displacement Reactions for Converting Silica Diatom Frustules into MgO and TiO2 (open access)

Gas-Solid Displacement Reactions for Converting Silica Diatom Frustules into MgO and TiO2

Technology for the microfabrication of freely moving parts began with a Bell Labs microgear spun by an air jet, and electrostatic silicon micro motors in the mid-1980s. It continued with development work on micropositioning of optics, miniature heat exchangers, small fluidic devices, and chemical reaction chambers. Recently, there has been a great deal of interest centered on the design and manufacture of devices of nanometer proportions and this speculation has spawned a new industry named, nanotechnology. Despite the technological and economic promise of this technology, current commercial micro/mesofabrication methods have largely been based upon two-dimensional processing principles which is not well suited to the low-cost mass production of three-dimensional micro devices with complex geometries and meso/nanoscale features. Diatoms are three dimensional (3D) microstructures from nature that provide a practical alternative for nanotechnology and microfabrication. Diatoms (Figure 1) are single-celled micro algae that form rigid cell walls (frustules) composed of amorphous silica. Their dimensions can range from less than 1 micron to several hundreds of microns. They are distributed throughout the world in aquatic, semi-aquatic and moist habitats, and extremely abundant in freshwater and marine ecosystems. Diatoms are thought to be responsible for up to 25% of the world's net primary …
Date: December 19, 2004
Creator: Kalem, Tugba
System: The UNT Digital Library
Group 4 Metalloporphyrin diolato Complexes and Catalytic Application of Metalloporphyrins and Related Transition Metal Complexes (open access)

Group 4 Metalloporphyrin diolato Complexes and Catalytic Application of Metalloporphyrins and Related Transition Metal Complexes

In this work, the first examples of group 4 metalloporphyrin 1,2-diolato complexes were synthesized through a number of strategies. In general, treatment of imido metalloporphyrin complexes, (TTP)M=NR, (M = Ti, Zr, Hf), with vicinal diols led to the formation of a series of diolato complexes. Alternatively, the chelating pinacolate complexes could be prepared by metathesis of (TTP)MCl{sub 2} (M = Ti, Hf) with disodium pinacolate. These complexes were found to undergo C-C cleavage reactions to produce organic carbonyl compounds. For titanium porphyrins, treatment of a titanium(II) alkyne adduct, (TTP)Ti({eta}{sup 2}-PhC{triple_bond}CPh), with aromatic aldehydes or aryl ketones resulted in reductive coupling of the carbonyl groups to produce the corresponding diolato complexes. Aliphatic aldehydes or ketones were not reactive towards (TTP)Ti({eta}{sup 2}-PhC{triple_bond}CPh). However, these carbonyl compounds could be incorporated into a diolato complex on reaction with a reactive precursor, (TTP)Ti[O(Ph){sub 2}C(Ph){sub 2}O] to provide unsymmetrical diolato complexes via cross coupling reactions. In addition, an enediolato complex (TTP)Ti(OCPhCPhO) was obtained from the reaction of (TTP)Ti({eta}{sup 2}-PhC{triple_bond}CPh) with benzoin. Titanium porphyrin diolato complexes were found to be intermediates in the (TTP)Ti=O-catalyzed cleavage reactions of vicinal diols, in which atmospheric oxygen was the oxidant. Furthermore, (TTP)Ti=O was capable of catalyzing the oxidation of benzyl alcohol …
Date: December 19, 2004
Creator: Du, Guodong
System: The UNT Digital Library
High-Pressure Catalytic Reactions of C6 Hydrocarbons on PlatinumSingle-Crystals and nanoparticles: A Sum Frequency Generation VibrationalSpectroscopic and Kinetic Study (open access)

High-Pressure Catalytic Reactions of C6 Hydrocarbons on PlatinumSingle-Crystals and nanoparticles: A Sum Frequency Generation VibrationalSpectroscopic and Kinetic Study

Catalytic reactions of cyclohexene, benzene, n-hexane, 2-methylpentane, 3-methylpentane, and 1-hexene on platinum catalysts were monitored in situ via sum frequency generation (SFG) vibrational spectroscopy and gas chromatography (GC). SFG is a surface specific vibrational spectroscopic tool capable of monitoring submonolayer coverages under reaction conditions without gas-phase interference. SFG was used to identify the surface intermediates present during catalytic processes on Pt(111) and Pt(100) single-crystals and on cubic and cuboctahedra Pt nanoparticles in the Torr pressure regime and at high temperatures (300K-450K). At low pressures (<10{sup -6} Torr), cyclohexene hydrogenated and dehydrogenates to form cyclohexyl (C{sub 6}H{sub 11}) and {pi}-allyl C{sub 6}H{sub 9}, respectively, on Pt(100). Increasing pressures to 1.5 Torr form cyclohexyl, {pi}-allyl C{sub 6}H{sub 9}, and 1,4-cyclohexadiene, illustrating the necessity to investigate catalytic reactions at high-pressures. Simultaneously, GC was used to acquire turnover rates that were correlated to reactive intermediates observed spectroscopically. Benzene hydrogenation on Pt(111) and Pt(100) illustrated structure sensitivity via both vibrational spectroscopy and kinetics. Both cyclohexane and cyclohexene were produced on Pt(111), while only cyclohexane was formed on Pt(100). Additionally, {pi}-allyl c-C{sub 6}H{sub 9} was found only on Pt(100), indicating that cyclohexene rapidly dehydrogenates on the (100) surface. The structure insensitive production of cyclohexane was found …
Date: December 19, 2007
Creator: Bratlie, Kaitlin
System: The UNT Digital Library
Hole Burning Imaging Studies of Cancerous and Analogous Normal Ovarian Tissues Utilizing Organelle Specific Dyes (open access)

Hole Burning Imaging Studies of Cancerous and Analogous Normal Ovarian Tissues Utilizing Organelle Specific Dyes

Presented in this dissertation is the successful demonstration that nonphotochemical hole burning (NPWB) imaging can be used to study in vitro tissue cellular systems for discerning differences in cellular ultrastructures due to cancer development. This has been accomplished with the surgically removed cancerous ovarian and analogous normal peritoneal tissues from the same patient and the application of a fluorescent mitochondrion specific dye, Molecular Probe MitoFluor Far Red 680 (MF680), commonly known as rhodamine 800, that has been proven to exhibit efficient NPHB. From the results presented in Chapters 4 and 5 , and Appendix B, the following conclusions were made: (1) fluorescence excitation spectra of MF680 and confocal microscopy images of thin sliced tissues incubated with MF680 confirm the site-specificity of the probe molecules in the cellular systems. (2) Tunneling parameters, {lambda}{sub 0} and {sigma}{sub {lambda}}, as well as the standard hole burning parameters (namely, {gamma} and S), have been determined for the tissue samples by hole growth kinetics (HGK) analyses. Unlike the preliminary cultured cell studies, these parameters have not shown the ability to distinguish tissue cellular matrices surrounding the chromophores. (3) Effects of an external electric (Stark) field on the nonphotochemical holes have been used to determine the …
Date: December 19, 2004
Creator: Matsuzaki, Satoshi
System: The UNT Digital Library
Inclusive Rates and Spectra of the Lambda, Cascade, and Omega Hyperons atBaBar (open access)

Inclusive Rates and Spectra of the Lambda, Cascade, and Omega Hyperons atBaBar

We employ Runs 1-4 off-peak data sample (about 21.5 fb{sup -1}) to produce the current world-best spectra and production rates measurements for three strangely-flavored baryons: the {Lambda} hyperon, the cascade hyperon, and the {Omega} hyperon. These improved measurements shall enable theoretical and phenomelogical workers to generate more realistic models for the hadronization process, currently one of the unresolved problem areas in the standard model of particle physics. This analysis was conducted using codes from release 16 series. We report the production rate at 10.54 GeV for the {Lambda} as 0.0900 {+-} 0.0006(stat.) {+-} 0.0039(sys.) per hadronic event. Our measured production rate at the same energy for the cascade hyperon is 0.00562 {+-} 0.00013(stat.) {+-} 0.00045(sys.) per hadronic event, while that for the {Omega} hyperon is 0.00027 {+-} 0.00004(stat.) {+-} 0.0008(sys.) per hadronic event. The spectral measurements for the respective particles also constitute current world-best measurements.
Date: May 19, 2008
Creator: Chien, Andrew L.
System: The UNT Digital Library
Low energy electron diffraction (LEED) and sum frequency generation (SFG) vibrational spectroscopy studies of solid-vacuum, solid-air and solid-liquid interfaces (open access)

Low energy electron diffraction (LEED) and sum frequency generation (SFG) vibrational spectroscopy studies of solid-vacuum, solid-air and solid-liquid interfaces

Electron based surface probing techniques can provide detailed information about surface structure or chemical composition in vacuum environments. The development of new surface techniques has made possible in situ molecular level studies of solid-gas interfaces and more recently, solid-liquid interfaces. The aim of this dissertation is two-fold. First, by using novel sample preparation, Low Energy Electron Diffraction (LEED) and other traditional ultra high vacuum (UHV) techniques are shown to provide new information on the insulator/vacuum interface. The surface structure of the classic insulator NaCl has been determined using these methods. Second, using sum frequency generation (SFG) surface specific vibrational spectroscopy studies were performed on both the biopolymer/air and electrode/electrolyte interfaces. The surface structure and composition of polyetherurethane-silicone copolymers were determined in air using SFG, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). SFG studies of the electrode (platinum, gold and copper)/electrolyte interface were performed as a function of applied potential in an electrochemical cell.
Date: August 19, 2002
Creator: Hoffer, Saskia
System: The UNT Digital Library
Low Temperature Thermoluminescence of Gamma Irradiated Potassium Dihydrogen Phosphate (open access)

Low Temperature Thermoluminescence of Gamma Irradiated Potassium Dihydrogen Phosphate

Thermoluminescence in potassium dihydrogen phosphate (KDP) induced by Co/ sup 60/ gamma irradiation at liquid nitrogen temperature (-198 deg C) was investigated. Glow curves in the temperature range --196 to 0 deg C were measured for a series of gamma exposure dosages ranging from 10/sup 4/ roentgen to 5 x 10/sup 6/ roentgen. The heating rate used for glow curve measurements was 12 deg C per minute. Twice recrystallized Mallinckrodt reagent grade potassium dihydrogen phosphate, with a grain size between 100 and 170 mesh, was used for most samples. In the case of the powder samples, the glow curve for an exposure dose of 10/sup 4/ roentgen exhibited two peaks in this temperature range, one at approximately --78 deg C and the other at approximately -146 deg C. The -78 deg C peak split into two distinct peaks with increasing dosage. At still higher doses an additional peak at about -9 deg C became evident. This peak may, however, be due to aluminum oxide. Calculation of the trap depth, E, and the frequency factor, s, associated with the --78 deg C peak, by the approximate method of Grossweiner yielded values of 0.485 ev and 9.97 x 10/sup 10/ sec/sup -1/ …
Date: October 19, 1962
Creator: Sims, T. M.
System: The UNT Digital Library