Sum Frequency Generation Vibrational Spectroscopy Studies on ModelPeptide Adsorption at the Hydrophobic Solid-Water and HydrophilicSolid-Water Interfaces (open access)

Sum Frequency Generation Vibrational Spectroscopy Studies on ModelPeptide Adsorption at the Hydrophobic Solid-Water and HydrophilicSolid-Water Interfaces

Sum frequency generation (SFG) vibrational spectroscopy has been used to study the interfacial structure of several polypeptides and amino acids adsorbed to hydrophobic and hydrophilic surfaces under a variety of experimental conditions. Peptide sequence, peptide chain length, peptide hydrophobicity, peptide side-chain type, surface hydrophobicity, and solution ionic strength all affect an adsorbed peptide's interfacial structure. Herein, it is demonstrated that with the choice of simple, model peptides and amino acids, surface specific SFG vibrational spectroscopy can be a powerful tool to elucidate the interfacial structure of these adsorbates. Herein, four experiments are described. In one, a series of isosequential amphiphilic peptides are synthesized and studied when adsorbed to both hydrophobic and hydrophilic surfaces. On hydrophobic surfaces of deuterated polystyrene, it was determined that the hydrophobic part of the peptide is ordered at the solid-liquid interface, while the hydrophilic part of the peptide appears to have a random orientation at this interface. On a hydrophilic surface of silica, it was determined that an ordered peptide was only observed if a peptide had stable secondary structure in solution. In another experiment, the interfacial structure of a model amphiphilic peptide was studied as a function of the ionic strength of the solution, a …
Date: December 19, 2007
Creator: York, Roger L.
System: The UNT Digital Library
Inclusive Rates and Spectra of the Lambda, Cascade, and Omega Hyperons atBaBar (open access)

Inclusive Rates and Spectra of the Lambda, Cascade, and Omega Hyperons atBaBar

We employ Runs 1-4 off-peak data sample (about 21.5 fb{sup -1}) to produce the current world-best spectra and production rates measurements for three strangely-flavored baryons: the {Lambda} hyperon, the cascade hyperon, and the {Omega} hyperon. These improved measurements shall enable theoretical and phenomelogical workers to generate more realistic models for the hadronization process, currently one of the unresolved problem areas in the standard model of particle physics. This analysis was conducted using codes from release 16 series. We report the production rate at 10.54 GeV for the {Lambda} as 0.0900 {+-} 0.0006(stat.) {+-} 0.0039(sys.) per hadronic event. Our measured production rate at the same energy for the cascade hyperon is 0.00562 {+-} 0.00013(stat.) {+-} 0.00045(sys.) per hadronic event, while that for the {Omega} hyperon is 0.00027 {+-} 0.00004(stat.) {+-} 0.0008(sys.) per hadronic event. The spectral measurements for the respective particles also constitute current world-best measurements.
Date: May 19, 2008
Creator: Chien, Andrew L.
System: The UNT Digital Library
High-Pressure Catalytic Reactions of C6 Hydrocarbons on PlatinumSingle-Crystals and nanoparticles: A Sum Frequency Generation VibrationalSpectroscopic and Kinetic Study (open access)

High-Pressure Catalytic Reactions of C6 Hydrocarbons on PlatinumSingle-Crystals and nanoparticles: A Sum Frequency Generation VibrationalSpectroscopic and Kinetic Study

Catalytic reactions of cyclohexene, benzene, n-hexane, 2-methylpentane, 3-methylpentane, and 1-hexene on platinum catalysts were monitored in situ via sum frequency generation (SFG) vibrational spectroscopy and gas chromatography (GC). SFG is a surface specific vibrational spectroscopic tool capable of monitoring submonolayer coverages under reaction conditions without gas-phase interference. SFG was used to identify the surface intermediates present during catalytic processes on Pt(111) and Pt(100) single-crystals and on cubic and cuboctahedra Pt nanoparticles in the Torr pressure regime and at high temperatures (300K-450K). At low pressures (<10{sup -6} Torr), cyclohexene hydrogenated and dehydrogenates to form cyclohexyl (C{sub 6}H{sub 11}) and {pi}-allyl C{sub 6}H{sub 9}, respectively, on Pt(100). Increasing pressures to 1.5 Torr form cyclohexyl, {pi}-allyl C{sub 6}H{sub 9}, and 1,4-cyclohexadiene, illustrating the necessity to investigate catalytic reactions at high-pressures. Simultaneously, GC was used to acquire turnover rates that were correlated to reactive intermediates observed spectroscopically. Benzene hydrogenation on Pt(111) and Pt(100) illustrated structure sensitivity via both vibrational spectroscopy and kinetics. Both cyclohexane and cyclohexene were produced on Pt(111), while only cyclohexane was formed on Pt(100). Additionally, {pi}-allyl c-C{sub 6}H{sub 9} was found only on Pt(100), indicating that cyclohexene rapidly dehydrogenates on the (100) surface. The structure insensitive production of cyclohexane was found …
Date: December 19, 2007
Creator: Bratlie, Kaitlin
System: The UNT Digital Library
Nanoscale chemical and mechanical characterization of thin films:sum frequency generation (SFG) vibrational spectroscopy at buriedinterfaces (open access)

Nanoscale chemical and mechanical characterization of thin films:sum frequency generation (SFG) vibrational spectroscopy at buriedinterfaces

Sum frequency generation (SFG) surface vibrational spectroscopy was used to characterize interfaces pertinent to current surface engineering applications, such as thin film polymers and novel catalysts. An array of advanced surface science techniques like scanning probe microscopy (SPM), x-ray photoelectron spectroscopy (XPS), gas chromatography (GC) and electron microscopy were used to obtain experimental measurements complementary to SFG data elucidating polymer and catalyst surface composition, surface structure, and surface mechanical behavior. Experiments reported in this dissertation concentrate on three fundamental questions: (1) How does the interfacial molecular structure differ from that of the bulk in real world applications? (2) How do differences in chemical environment affect interface composition or conformation? (3) How do these changes correlate to properties such as mechanical or catalytic performance? The density, surface energy and bonding at a solid interface dramatically alter the polymer configuration, physics and mechanical properties such as surface glass transition, adhesion and hardness. The enhanced sensitivity of SFG at the buried interface is applied to three systems: a series of acrylates under compression, the compositions and segregation behavior of binary polymer polyolefin blends, and the changes in surface structure of a hydrogel as a function of hydration. In addition, a catalytically active thin …
Date: May 19, 2006
Creator: Kweskin, S.J.
System: The UNT Digital Library
An Enquiry Concerning Charmless Semileptonic Decays of Bottom Mesons (open access)

An Enquiry Concerning Charmless Semileptonic Decays of Bottom Mesons

The branching fractions for the decays B {yields} P{ell}{nu}{sub {ell}}, where P are the pseudoscalar charmless mesons {pi}{sup {+-}}, {pi}{sup 0}, {eta} and {eta}{prime} and {ell} is an electron or muon, are measured with B{sup 0} and B{sup {+-}} mesons found in the recoil of a second B meson decaying as B {yields} D{ell}{nu}{sub {ell}} or B {yields} D*{ell}{nu}{sub {ell}}. The measurements are based on a data set of 348 fb{sup -1} of e{sup +}e{sup -} collisions at {radical}s = 10.58 GeV recorded with the BABAR detector. Assuming isospin symmetry, measured pionic branching fractions are combined into {Beta}(B{sup 0} {yields} {pi}{sup -}{ell}{sup +}{nu}{sub {ell}}) = (1.54 {+-} 0.17{sub (stat)} {+-} 0.09{sub (syst)}) x 10{sup -4}. First evidence of the B{sup +} {yields} {eta}{ell}{sup +}{nu}{sub {ell}} decay is seen; its branching fraction is measured to be {Beta}(B{sup +} {yields} {eta}{ell}{sup +}{nu}{sub {ell}}) = (0.64 {+-} 0.20{sub (stat)} {+-} 0.03{sub (syst)}) x 10{sup -4}. It is determined that {Beta}(B{sup +} {yields} {eta}{prime}{ell}{sup +}{nu}{sub {ell}}) < 0.47 x 10{sup -4} to 90% confidence. Partial branching fractions for the pionic decays in ranges of the momentum transfer and various published calculations of the B {yields} {pi} hadronic form factor are used to obtain values …
Date: September 19, 2008
Creator: Chaisanguanthum, Kris Somboon & /SLAC, /Harvard U.
System: The UNT Digital Library
X-ray resonant magnetic scattering investigations of hexagonal multiferroics RMnO3 (R = Dy, Ho, Er) (open access)

X-ray resonant magnetic scattering investigations of hexagonal multiferroics RMnO3 (R = Dy, Ho, Er)

Electricity and magnetism were unified into a common subject by James Clerk Maxwell in the nineteenth century yielding the electromagnetic theory. Four equations govern the dynamics of electric charges and magnetic fields, commonly known as Maxwell's equations. Maxwell's equations demonstrate that an accelerated charged particle can produce magnetic fields and a time varying magnetic field can induce a voltage - thereby linking the two phenomena. However, in solids, electric and magnetic ordering are most often considered separately and usually with good reason: the electric charges of electrons and ions are responsible for the charge effects, whereas the electron spin governs magnetic properties.
Date: December 19, 2009
Creator: Nandi, Shibabrata
System: The UNT Digital Library
Considering value of information when using CFD in design (open access)

Considering value of information when using CFD in design

This thesis presents an approach to find lower resolution CFD models that can accurately lead a designer to a correct decision at a lower computational cost. High-fidelity CFD models often contain too much information and come at a higher computational cost, limiting the designs a designer can test and how much optimization can be performed on the design. Lower model resolution is commonly used to reduce computational time. However there are no clear guidelines on how much model accuracy is required. Instead experience and intuition are used to select an appropriate lower resolution model. This thesis presents an alternative to this ad hoc method by considering the added value of the addition information provided by increasing accurate and more computationally expensive models.
Date: December 19, 2009
Creator: Misra, John Satprim
System: The UNT Digital Library
Direct analysis of samples by mass spectrometry: From elements to bio-molecules using laser ablation inductively couple plasma mass spectrometry and laser desorption/ionization mass spectrometry (open access)

Direct analysis of samples by mass spectrometry: From elements to bio-molecules using laser ablation inductively couple plasma mass spectrometry and laser desorption/ionization mass spectrometry

Mass spectrometric methods that are able to analyze solid samples or biological materials with little or no sample preparation are invaluable to science as well as society. Fundamental research that has discovered experimental and instrumental parameters that inhibit fractionation effects that occur during the quantification of elemental species in solid samples by laser ablation inductively coupled plasma mass spectrometry is described. Research that determines the effectiveness of novel laser desorption/ionization mass spectrometric methods for the molecular analysis of biological tissues at atmospheric pressure and at high spatial resolution is also described. A spatial resolution is achieved that is able to analyze samples at the single cell level.
Date: August 19, 2009
Creator: Perdian, David C.
System: The UNT Digital Library
Ultrafast Magnetization Dynamics of SrRuO3 Thin Films (open access)

Ultrafast Magnetization Dynamics of SrRuO3 Thin Films

Itinerant ferromagnet SrRuO3 has drawn interest from physicists due to its unusual transport and magnetic properties as well as from engineers due to its low resistivity and good lattice-matching to other oxide materials. The exact electronic structure remains a mystery, as well as details of the interactions between magnetic and electron transport properties. This thesis describes the use of time-resolved magneto-optical Kerr spectroscopy to study the ferromagnetic resonance of SrRuO3 thin films, where the ferromagnetic resonance is initiated by a sudden change in the easy axis direction in response to a pump pulse. The rotation of the easy axis is induced by laser heating, taking advantage of a temperature-dependent easy axis direction in SrRuO3 thin films. By measuring the change in temperature of the magnetic system in response to the laser pulse, we find that the specific heat is dominated by magnons up to unusually high temperature, ~;;100 K, and thermal diffusion is limited by a boundary resistance between the film and the substrate that is not consistent with standard phonon reflection and scattering models. We observe a high FMR frequency, 250 GHz, and large Gilbert damping parameter, alpha ~;; 1, consistent with strong spin-orbit coupling. We observe a time-dependent …
Date: May 19, 2009
Creator: Langner, Matthew C.
System: The UNT Digital Library
Evaluation of bisphenol E cyanate ester for the resin-injection repair of advanced composites (open access)

Evaluation of bisphenol E cyanate ester for the resin-injection repair of advanced composites

This thesis is a compilation of a general introduction and literature review that ties together the subsequent chapters which consist of two journal articles that have yet to be submitted for publication. The overall topic relates to the evaluation and application of a new class of cyanate ester resin with unique properties that lend it applicable to use as a resin for injection repair of high glass transition temperature polymer matrix composites. The first article (Chapter 2) details the evaluation and optimization of adhesive properties of this cyanate ester and alumina nanocomposites under different conditions. The second article (Chapter 3) describes the development and evaluation of an injection repair system for repairing delaminations in polymer matrix composites.
Date: December 19, 2009
Creator: Lio, Wilber Yaote
System: The UNT Digital Library
Synthesis, Structure, and Reactivity ofbis(1,2,4-tri-t-butylcyclopentadienyl) Complexes of Cerium (open access)

Synthesis, Structure, and Reactivity ofbis(1,2,4-tri-t-butylcyclopentadienyl) Complexes of Cerium

The sterically demanding 1,2,4-tri-t-butylcyclopentadienylligand (1,2,4-(Me3C)3C5H2, hereafter Cp') has been used to preparemonomeric cerium metallocenes, Cp 2CeX (X = Cl, I, OSO2CF3), which areused to synthesize the benzyl, Cp'2CeCH2C6H5. The benzyl is a usefulstarting material for preparing other complexes in the Cp'2CeZ system (Z= BF4, F, NH2, C6H5, H). X-ray crystal structures of Cp'2CeOSO2CF3,Cp'2CeF, Cp'2CeCH2C6H5, and Cp'2CeH are presented. The benzyl slowlydecomposes in solution to toluene and a metallacycle,[Cp'][(Me3C)2C5H2(CMe2CH2)]Ce. The ring CMe3 groups of both themetallacycle and the hydride, Cp'2CeH, can be fully deuterated byprolonged exposure to C6D6, providing a useful labeling tool inmechanistic studies.The hydride activates C-F and/or C-H bonds influorobenzenes, C6HxF6-x , x = 0-5. The reactions are selective, with theselectivity depending on the presence of two fluorines ortho to thereaction site more than on the type of bond activated. Complexes of thetype Cp'2CeC6HxF5-x , x = 0-4, are formed as intermediates, which slowlydecompose in solution to Cp'2CeF and fluorobenzynes, C6HxF4-x, x = 0-4,which are trapped. The rate at which Cp'2CeC6HxF5-x complexes decomposeincreases as the number of fluorines decreases. Complexes with oneortho-fluorine decompose much faster than those with two ortho-fluorines.The metallacycle activates only C-H bonds in fluorobenzenes, permittingthe synthesis of specific Cp'2CeC6HxF5-x complexes. The crystal structureof Cp'2CeC6F5 is presented. …
Date: May 19, 2005
Creator: Werkema, Evan L.
System: The UNT Digital Library
Solvation! (open access)

Solvation!

This dissertation consists of two closely related parts: theory development and coding of correlation effects in a model potential for solvation, and study of solvent effects on chemical reactions and processes. The effective fragment potential (EFP) method has been re-parameterized, using density functional theory (DFT), more specifically, the B3LYP functional. The DFT based EFP method includes short-range correlation effects; hence it is a first step in incorporating the treatment of correlation in the EFP solvation model. In addition, the gradient of the charge penetration term in the EFP model was derived and coded. The new method has been implemented in the electronic structure code GAMESS and is in use. Formulas for the dynamic dipole polarizability, C{sub 6} dispersion coefficient and dispersion energy were derived and coded as a part of a treatment of the dispersion interactions in the general solvation model, EFP2. Preliminary results are in good agreement with experimental and other theoretical data. The DFT based EFP (EFP1/DFT) method was used in the study of microsolvation effects on the S{sub N}2 substitution reaction, between chloride and methyl bromide. Changes in the central barrier, for several lowest lying isomers of the systems with one, two, three and four waters, were …
Date: December 19, 2004
Creator: Adamovic, Ivana
System: The UNT Digital Library
Oxidation Behavior and Chlorination Treatment to Improve Oxidation Resistance of Nb-Mo-Si-B Alloys (open access)

Oxidation Behavior and Chlorination Treatment to Improve Oxidation Resistance of Nb-Mo-Si-B Alloys

This thesis is written in an alternate format. The thesis is composed of a general introduction, two original manuscripts, and a general conclusion. References cited within each chapter are given at the end of each chapter. The general introduction starts with the driving force behind this research, and gives an overview of previous work on boron doped molybdenum silicides, Nb/Nb{sub 5}Si{sub 3} composites, boron modified niobium silicides and molybdenum niobium silicides. Chapter 2 focuses on the oxidation behavior of Nb-Mo-Si-B alloys. Chapter 3 contains studies on a novel chlorination technique to improve the oxidation resistance of Nb-Mo-Si-B alloys. Chapter 4 summarizes the important results in this study.
Date: December 19, 2004
Creator: Behrani, Vikas
System: The UNT Digital Library
New Palladium-Catalyzed Approaches to Heterocycles and Carbocycles (open access)

New Palladium-Catalyzed Approaches to Heterocycles and Carbocycles

The tert-butylimines of o-(1-alkynyl)benzaldehydes and analogous pyridinecarbaldehydes have been cyclized under very mild reaction conditions in the presence of I{sub 2}, ICl, PhSeCl, PhSCl and p-O{sub 2}NC{sub 6}H{sub 4}SCl to give the corresponding halogen-, selenium- and sulfur-containing disubstituted isoquinolines and naphthyridines, respectively. Monosubstituted isoquinolines and naphthyridines have been synthesized by the metal-catalyzed ring closure of these same iminoalkynes. This methodology accommodates a variety of iminoalkynes and affords the anticipated heterocycles in moderate to excellent yields. The Pd(II)-catalyzed cyclization of 2-(1-alkynyl)arylaldimines in the presence of various alkenes provides an efficient way to synthesize a variety of 4-(1-alkenyl)-3-arylisoquinolines in moderate to excellent yields. The introduction of an ortho-methoxy group on the arylaldimine promotes the Pd-catalyzed cyclization and stabilizes the resulting Pd(II) intermediate, improving the yields of the isoquinoline products. Highly substituted naphthalenes have been synthesized by the palladium-catalyzed annulation of a variety of internal alkynes, in which two new carbon-carbon bonds are formed in a single step under relatively mild reaction conditions. This method has also been used to synthesize carbazoles, although a higher reaction temperature is necessary. The process involves arylpalladation of the alkyne, followed by intramolecular Heck olefination and double bond isomerization. This method accommodates a variety of functional groups …
Date: December 19, 2004
Creator: Huang, Qinhua
System: The UNT Digital Library
Group 4 Metalloporphyrin diolato Complexes and Catalytic Application of Metalloporphyrins and Related Transition Metal Complexes (open access)

Group 4 Metalloporphyrin diolato Complexes and Catalytic Application of Metalloporphyrins and Related Transition Metal Complexes

In this work, the first examples of group 4 metalloporphyrin 1,2-diolato complexes were synthesized through a number of strategies. In general, treatment of imido metalloporphyrin complexes, (TTP)M=NR, (M = Ti, Zr, Hf), with vicinal diols led to the formation of a series of diolato complexes. Alternatively, the chelating pinacolate complexes could be prepared by metathesis of (TTP)MCl{sub 2} (M = Ti, Hf) with disodium pinacolate. These complexes were found to undergo C-C cleavage reactions to produce organic carbonyl compounds. For titanium porphyrins, treatment of a titanium(II) alkyne adduct, (TTP)Ti({eta}{sup 2}-PhC{triple_bond}CPh), with aromatic aldehydes or aryl ketones resulted in reductive coupling of the carbonyl groups to produce the corresponding diolato complexes. Aliphatic aldehydes or ketones were not reactive towards (TTP)Ti({eta}{sup 2}-PhC{triple_bond}CPh). However, these carbonyl compounds could be incorporated into a diolato complex on reaction with a reactive precursor, (TTP)Ti[O(Ph){sub 2}C(Ph){sub 2}O] to provide unsymmetrical diolato complexes via cross coupling reactions. In addition, an enediolato complex (TTP)Ti(OCPhCPhO) was obtained from the reaction of (TTP)Ti({eta}{sup 2}-PhC{triple_bond}CPh) with benzoin. Titanium porphyrin diolato complexes were found to be intermediates in the (TTP)Ti=O-catalyzed cleavage reactions of vicinal diols, in which atmospheric oxygen was the oxidant. Furthermore, (TTP)Ti=O was capable of catalyzing the oxidation of benzyl alcohol …
Date: December 19, 2004
Creator: Du, Guodong
System: The UNT Digital Library
Hole Burning Imaging Studies of Cancerous and Analogous Normal Ovarian Tissues Utilizing Organelle Specific Dyes (open access)

Hole Burning Imaging Studies of Cancerous and Analogous Normal Ovarian Tissues Utilizing Organelle Specific Dyes

Presented in this dissertation is the successful demonstration that nonphotochemical hole burning (NPWB) imaging can be used to study in vitro tissue cellular systems for discerning differences in cellular ultrastructures due to cancer development. This has been accomplished with the surgically removed cancerous ovarian and analogous normal peritoneal tissues from the same patient and the application of a fluorescent mitochondrion specific dye, Molecular Probe MitoFluor Far Red 680 (MF680), commonly known as rhodamine 800, that has been proven to exhibit efficient NPHB. From the results presented in Chapters 4 and 5 , and Appendix B, the following conclusions were made: (1) fluorescence excitation spectra of MF680 and confocal microscopy images of thin sliced tissues incubated with MF680 confirm the site-specificity of the probe molecules in the cellular systems. (2) Tunneling parameters, {lambda}{sub 0} and {sigma}{sub {lambda}}, as well as the standard hole burning parameters (namely, {gamma} and S), have been determined for the tissue samples by hole growth kinetics (HGK) analyses. Unlike the preliminary cultured cell studies, these parameters have not shown the ability to distinguish tissue cellular matrices surrounding the chromophores. (3) Effects of an external electric (Stark) field on the nonphotochemical holes have been used to determine the …
Date: December 19, 2004
Creator: Matsuzaki, Satoshi
System: The UNT Digital Library
Solidification at the High and Low Rate Extreme (open access)

Solidification at the High and Low Rate Extreme

The microstructures formed upon solidification are strongly influenced by the imposed growth rates on an alloy system. Depending on the characteristics of the solidification process, a wide range of growth rates is accessible. The prevailing solidification mechanisms, and thus the final microstructure of the alloy, are governed by these imposed growth rates. At the high rate extreme, for instance, one can have access to novel microstructures that are unattainable at low growth rates. While the low growth rates can be utilized for the study of the intrinsic growth behavior of a certain phase growing from the melt. Although the length scales associated with certain processes, such as capillarity, and the diffusion of heat and solute, are different at low and high rate extremes, the phenomena that govern the selection of a certain microstructural length scale or a growth mode are the same. Consequently, one can analyze the solidification phenomena at both high and low rates by using the same governing principles. In this study, we examined the microstructural control at both low and high extremes. For the high rate extreme, the formation of crystalline products and factors that control the microstructure during rapid solidification by free-jet melt spinning are examined …
Date: December 19, 2004
Creator: Meco, Halim
System: The UNT Digital Library
A Scaled Final Focus Experiment for Heavy Ion Fusion (open access)

A Scaled Final Focus Experiment for Heavy Ion Fusion

A one-tenth dimensionally scaled version of a final focus sub-system design for a heavy ion fusion driver is built and tested. By properly scaling the physics parameters that relate particle energy and mass, beam current, beam emittance, and focusing field, the transverse dynamics of a driver scale final focus are replicated in a small laboratory beam. The experiment uses a 95 {micro}A beam of 160 keV Cs{sup +} ions to study the dynamics as the beam is brought to a ballistic focus in a lattice of six quadrupole magnets. Diagnostic stations along the experiment track the evolution of the transverse phase space of the beam. The measured focal spot size is consistent with calculations and the report of the design on which the experiment is based. By uniformly varying the strengths of the focusing fields in the lattice, the chromatic effect of a small energy deviation on the spot size can be reproduced. This is done for {+-}1% and {+-}2% shifts and the changes in the focus are measured. Additionally, a 400 {micro}A beam is propagated through the experiment and partially neutralized after the last magnet using electrons released from a hot tungsten filament. The increase in beam current allows …
Date: September 19, 2000
Creator: MacLaren, Stephan, Alexander
System: The UNT Digital Library
A Performance Comparison of Tree and Ring Topologies in Distributed System (open access)

A Performance Comparison of Tree and Ring Topologies in Distributed System

A distributed system is a collection of computers that are connected via a communication network. Distributed systems have become commonplace due to the wide availability of low-cost, high performance computers and network devices. However, the management infrastructure often does not scale well when distributed systems get very large. Some of the considerations in building a distributed system are the choice of the network topology and the method used to construct the distributed system so as to optimize the scalability and reliability of the system, lower the cost of linking nodes together and minimize the message delay in transmission, and simplify system resource management. We have developed a new distributed management system that is able to handle the dynamic increase of system size, detect and recover the unexpected failure of system services, and manage system resources. The topologies used in the system are the tree-structured network and the ring-structured network. This thesis presents the research background, system components, design, implementation, experiment results and the conclusions of our work. The thesis is organized as follows: the research background is presented in chapter 1. Chapter 2 describes the system components, including the different node types and different connection types used in the system. …
Date: December 19, 2005
Creator: Huang, Min
System: The UNT Digital Library
Fabrication of Ceramic Layer-by-Layer Infrared Wavelength Photonic Band Gap Crystals (open access)

Fabrication of Ceramic Layer-by-Layer Infrared Wavelength Photonic Band Gap Crystals

Photonic band gap (PBG) crystals, also known as photonic crystals, are periodic dielectric structures which form a photonic band gap that prohibit the propagation of electromagnetic (EM) waves of certain frequencies at any incident angles. Photonic crystals have several potential applications including zero-threshold semiconductor lasers, the inhibition of spontaneous emission, dielectric mirrors, and wavelength filters. If defect states are introduced in the crystals, light can be guided from one location to another or even a sharp bending of light in micron scale can be achieved. This generates the potential for optical waveguide and optical circuits, which will contribute to the improvement in the fiber-optic communications and the development of high-speed computers.
Date: December 19, 2004
Creator: Kang, Henry Hao-Chuan
System: The UNT Digital Library
Benchmarking: More Aspects of High Performance Computing (open access)

Benchmarking: More Aspects of High Performance Computing

The original HPL algorithm makes the assumption that all data can be fit entirely in the main memory. This assumption will obviously give a good performance due to the absence of disk I/O. However, not all applications can fit their entire data in memory. These applications which require a fair amount of I/O to move data to and from main memory and secondary storage, are more indicative of usage of an Massively Parallel Processor (MPP) System. Given this scenario a well designed I/O architecture will play a significant part in the performance of the MPP System on regular jobs. And, this is not represented in the current Benchmark. The modified HPL algorithm is hoped to be a step in filling this void. The most important factor in the performance of out-of-core algorithms is the actual I/O operations performed and their efficiency in transferring data to/from main memory and disk, Various methods were introduced in the report for performing I/O operations. The I/O method to use depends on the design of the out-of-core algorithm. Conversely, the performance of the out-of-core algorithm is affected by the choice of I/O operations. This implies, good performance is achieved when I/O efficiency is closely tied …
Date: December 19, 2004
Creator: Ravindrudu, Rahul
System: The UNT Digital Library
Coupling Temperature Control with Electrochemically Modulated Liquid Chromatography: Fundamental Aspects and Applications (open access)

Coupling Temperature Control with Electrochemically Modulated Liquid Chromatography: Fundamental Aspects and Applications

The primary focus of the doctoral research presented herein has been the integration of temperature control into electrochemically modulated liquid chromatography (EMLC). The combination of temperature control and the tunable characteristics of carbonaceous EMLC stationary phases have been invaluable in deciphering the subtleties of the retention mechanism. The effects of temperature and E{sub app} on the retention of several naphthalene disulfonates were therefore examined by the van' Hoff relationship. The results indicate that while the retention of both compounds is exothermic at levels comparable to that in many reversed-phase separations, the potential dependence of the separation is actually entropically affected in a manner paralleling that of several classical ion exchange systems. Furthermore, the retention of small inorganic anions at constant temperature also showed evidence of an ion exchange type of mechanism. While a more complete mechanistic description will come from examining the thermodynamics of retention for a wider variety of analytes, this research has laid the groundwork for full exploitation of temperature as a tool to develop retention rules for EMLC. Operating EMLC at elevated temperature and flow conditions has decreased analysis time and has enabled the separation of analytes not normally achievable on a carbon stationary phase. The separation …
Date: December 19, 2004
Creator: Ponton, Lisa M.
System: The UNT Digital Library
Morphological Control of Multifunctional Mesoporous Silica Nanomaterials for Catalysis Applications (open access)

Morphological Control of Multifunctional Mesoporous Silica Nanomaterials for Catalysis Applications

I found an efficient method to control the morphology of the organically monofunctionalized mesoporous silica materials by introducing different types of organoalkoxysilanes in a base-catalyzed co-condensation reaction. The monofunctionalized materials exhibit different particle morphologies relative to the pure MCM-41 material. The concentration dependence of the morphology is a critical factor to determine the final particle shape. A proposed mechanism of the shape evolution is also offered. After understanding the role of organoalkoxysilanes in producing various well-shaped nanomaterials, I also obtained a series of bifunctional mesoporous silica materials with certain particle morphology. A series of bifunctional mesoporous silica nanospheres (MSNs) whose physicochemical properties was investigated via solid state NMR techniques and Cu{sup 2+} adsorption capacity tests, The ratio of two different organic groups inside of mesopores of these MSNs could be fine-tuned. These MSNs serve as a useful model system to study substrate selectivity in catalytic reactions and sorption phenomena. For example, the Cu{sup 2+} adsorption capacity of these materials was dictated by the chemical nature of the mesopores generated by the different organic functional groups. An investigation of the substrate selectivity of the bifunctionalized MSNs in a competitive nitroaldol reaction using an equimolar amount of two competing 4-nitrobenzaldehyde derivatives was …
Date: December 19, 2004
Creator: Huh, Seong
System: The UNT Digital Library
Development of Chiral LC-MS Methods for small Molecules and Their Applications in the Analysis of Enantiomeric Composition and Pharmacokinetic Studies (open access)

Development of Chiral LC-MS Methods for small Molecules and Their Applications in the Analysis of Enantiomeric Composition and Pharmacokinetic Studies

The purpose of this research was to develop sensitive LC-MS methods for enantiomeric separation and detection, and then apply these methods for determination of enantiomeric composition and for the study of pharmacokinetic and pharmacodynamic properties of a chiral nutraceutical. Our first study, evaluated the use of reverse phase and polar organic mode for chiral LC-API/MS method development. Reverse phase methods containing high water were found to decrease ionization efficiency in electrospray, while polar organic methods offered good compatibility and low limits of detection with ESI. The use of lower flow rates dramatically increased the sensitivity by an order of magnitude. Additionally, for rapid chiral screening, the coupled Chirobiotic column afforded great applicability for LC-MS method development. Our second study, continued with chiral LC-MS method development in this case for the normal phase mode. Ethoxynonafluorobutane, a fluorocarbon with low flammability and no flashpoint, was used as a substitute solvent for hexane/heptane mobile phases for LC-APCI/MS. Comparable chromatographic resolutions and selectivities were found using ENFB substituted mobile phase systems, although, peak efficiencies were significantly diminished. Limits of detection were either comparable or better for ENFB-MS over heptane-PDA detection. The miscibility of ENFB with a variety of commonly used organic modifiers provided for …
Date: December 19, 2004
Creator: Desai, Meera Jay
System: The UNT Digital Library