Resource Type

1,102 Matching Results

Results open in a new window/tab.

Theoretical STM signatures and transport properties of native defects in carbon nanotubes (open access)

Theoretical STM signatures and transport properties of native defects in carbon nanotubes

Article on theoretical STM signatures and transport properties of native defects in carbon nanotubes.
Date: May 15, 2000
Creator: Orlikowski, Daniel; Buongiorno Nardelli, Marco; Bernholc, Jerry & Roland, Christopher
System: The UNT Digital Library
Experimental Quenching of Harmonic Stimuli: Universality of Linear Response Theory (open access)

Experimental Quenching of Harmonic Stimuli: Universality of Linear Response Theory

This article discusses experimental quenching of harmonic stimuli.
Date: July 15, 2009
Creator: Allegrini, Paolo; Bologna, Mauro; Fronzoni, Leone; Grigolini, Paolo & Silvestri, Ludovico
System: The UNT Digital Library
THz radiation as a bunch diagnostic forlaser-wakefield-accelerated electron bunches (open access)

THz radiation as a bunch diagnostic forlaser-wakefield-accelerated electron bunches

Experimental results are reported from two measurementtechniques (semiconductor switching and electro-optic sampling) thatallow temporal characterization of electron bunches produced by alaser-driven plasma-based accelerator. As femtosecond electron bunchesexit the plasma-vacuum interface, coherent transition radiation (at THzfrequencies) is emitted. Measuring the properties of this radiationallows characterization of the electron bunches. Theoretical work on theemission mechanism is represented, including a model that calculates theTHz waveform from a given bunch profile. It is found that the spectrum ofthe THz pulse is coherent up to the 200 mu m thick crystal (ZnTe)detection limit of 4 THz, which corresponds to the production of sub-50fs (root-mean-square) electron bunch structure. The measurementsdemonstrate both the shot-to-shot stability of bunch parameters that arecritical to THz emission (such as total charge and bunch length), as wellas femtosecond synchrotron between bunch, THz pulse, and laserbeam.
Date: February 15, 2006
Creator: van Tilborg, J.; Schroeder, C. B.; Filip, C. V.; Toth, Cs.; Geddes, C. G. R.; Fubiani, G. et al.
System: The UNT Digital Library
High-resolution simulations and modeling of reshocked single-mode Richtmyer-Meshkov instability. I. Comparison to experimental data and to amplitude growth model predictions (open access)

High-resolution simulations and modeling of reshocked single-mode Richtmyer-Meshkov instability. I. Comparison to experimental data and to amplitude growth model predictions

The reshocked single-mode Richtmyer-Meshkov instability is simulated in two spatial dimensions using the fifth- and ninth-order weighted essentially non-oscillatory shock-capturing method with uniform spatial resolution of 256 points per initial perturbation wavelength. The initial conditions and computational domain are modeled after the single-mode, Mach 1.21 air(acetone)/SF{sub 6} shock tube experiment of Collins and Jacobs [J. Fluid Mech. 464, 113 (2002)]. The simulation densities are shown to be in very good agreement with the corrected experimental planar laser-induced fluorescence images at selected times before reshock of the evolving interface. Analytical, semianalytical and phenomenological linear and nonlinear, impulsive, perturbation and potential flow models for single-mode Richtmyer-Meshkov unstable perturbation growth are summarized. The simulation amplitudes are shown to be in very good agreement with the experimental data and with the predictions of linear amplitude growth models for small times and with those of nonlinear amplitude growth models at later times up to the time at which the driver-based expansion in the experiment (but not present in the simulations or models) expands the layer before reshock. The qualitative and quantitative differences between the fifth- and ninth-order simulation results are discussed. Using a local and global quantitative metric, the prediction of the Zhang and Sohn …
Date: May 15, 2006
Creator: Latini, M; Schilling, O & Don, W
System: The UNT Digital Library
Similarity-Guided Streamline Placement with Error Evaluation (open access)

Similarity-Guided Streamline Placement with Error Evaluation

Most streamline generation algorithms either provide a particular density of streamlines across the domain or explicitly detect features, such as critical points, and follow customized rules to emphasize those features. However, the former generally includes many redundant streamlines, and the latter requires Boolean decisions on which points are features (and may thus suffer from robustness problems for real-world data). We take a new approach to adaptive streamline placement for steady vector fields in 2D and 3D. We define a metric for local similarity among streamlines and use this metric to grow streamlines from a dense set of candidate seed points. The metric considers not only Euclidean distance, but also a simple statistical measure of shape and directional similarity. Without explicit feature detection, our method produces streamlines that naturally accentuate regions of geometric interest. In conjunction with this method, we also propose a quantitative error metric for evaluating a streamline representation based on how well it preserves the information from the original vector field. This error metric reconstructs a vector field from points on the streamline representation and computes a difference of the reconstruction from the original vector field.
Date: August 15, 2007
Creator: Chen, Y.; Cohen, J. D. & Krolik, J. H.
System: The UNT Digital Library
Increasing FTIR spectromicroscopy speed and resolution through compressive imaging (open access)

Increasing FTIR spectromicroscopy speed and resolution through compressive imaging

At the Advanced Light Source at Lawrence Berkeley National Laboratory, we are investigating how to increase both the speed and resolution of synchrotron infrared imaging. Synchrotron infrared beamlines have diffraction-limited spot sizes and high signal to noise, however spectral images must be obtained one point at a time and the spatial resolution is limited by the effects of diffraction. One technique to assist in speeding up spectral image acquisition is described here and uses compressive imaging algorithms. Compressive imaging can potentially attain resolutions higher than allowed by diffraction and/or can acquire spectral images without having to measure every spatial point individually thus increasing the speed of such maps. Here we present and discuss initial tests of compressive imaging techniques performed with ALS Beamline 1.4.3?s Nic-Plan infrared microscope, Beamline 1.4.4 Continuum XL IR microscope, and also with a stand-alone Nicolet Nexus 470 FTIR spectrometer.
Date: October 15, 2007
Creator: Gallet, Julien; Riley, Michael; Hao, Zhao & Martin, Michael C
System: The UNT Digital Library
High-Power Coupler Component Test Stand Status and Results (open access)

High-Power Coupler Component Test Stand Status and Results

None
Date: June 15, 2007
Creator: Rusnak, B; Wang, F; Adolphsen, C; Bowden, G; Nantista, C; Swent, R et al.
System: The UNT Digital Library
Comparison of LiMnPO4 made by Combustion and Hydrothermal Syntheses (open access)

Comparison of LiMnPO4 made by Combustion and Hydrothermal Syntheses

Among the olivine-structured metal phosphate family, LiMnPO{sub 4} exhibits a high discharge potential (4V), which is still compatible with common electrolytes, making it interesting for use in the next generation of Li ion batteries. The extremely low electronic conductivity of this material severely limits its electrochemical performance, however. One strategy to overcome this limitation is to make LiMnPO{sub 4} nanoparticulate to decrease the diffusion distance. Another is to add a carbon or other conductive coating in intimate contact with the nanoparticles of the main phase, as is commonly done with LiFePO{sub 4}. The electrochemical performance of LiFePO{sub 4} is highly dependent on the quality of the carbon coatings on the particles [1-2], among other variables. Combustion synthesis allows the co-synthesis of nanoparticles coated with carbon in one step. Hydrothermal synthesis is used industrially to make LiFePO{sub 4} cathode materials [3] and affords a good deal of control over purity, crystallinity, and particle size. A wide range of olivine-structured materials has been successfully prepared by this technique [4], including LiMnPO{sub 4} in this study. In this paper, we report on the new synthesis of nano-LiMnPO{sub 4} by a combustion method. The purity is dependent upon the conditions used for synthesis, including …
Date: May 15, 2008
Creator: Chen, Jiajun; Doeff, Marca M. & Wang, Ruigang
System: The UNT Digital Library
Analysis of Injection-Induced Micro-Earthquakes in a Geothermal Steam Reservoir, The Geysers Geothermal Field, California (open access)

Analysis of Injection-Induced Micro-Earthquakes in a Geothermal Steam Reservoir, The Geysers Geothermal Field, California

In this study we analyze relative contributions to the cause and mechanism of injection-induced micro-earthquakes (MEQs) at The Geysers geothermal field, California. We estimated the potential for inducing seismicity by coupled thermal-hydrological-mechanical analysis of the geothermal steam production and cold water injection to calculate changes in stress (in time and space) and investigated if those changes could induce a rock mechanical failure and associated MEQs. An important aspect of the analysis is the concept of a rock mass that is critically stressed for shear failure. This means that shear stress in the region is near the rock-mass frictional strength, and therefore very small perturbations of the stress field can trigger an MEQ. Our analysis shows that the most important cause for injection-induced MEQs at The Geysers is cooling and associated thermal-elastic shrinkage of the rock around the injected fluid that changes the stress state in such a way that mechanical failure and seismicity can be induced. Specifically, the cooling shrinkage results in unloading and associated loss of shear strength in critically shear-stressed fractures, which are then reactivated. Thus, our analysis shows that cooling-induced shear slip along fractures is the dominant mechanism of injection-induced MEQs at The Geysers.
Date: May 15, 2008
Creator: Rutqvist, Jonny; Rutqvist, J. & Oldenburg, C.M.
System: The UNT Digital Library
An Implicit "Drift-Lorentz" Particle Mover for Plasma and Beam Simulations (open access)

An Implicit "Drift-Lorentz" Particle Mover for Plasma and Beam Simulations

In order to efficiently perform particle simulations in systems with widely varying magnetization, we developed a drift-Lorentz mover, which interpolates between full particle dynamics and drift kinetics in such a way as to preserve a physically correct gyroradius and particle drifts for both large and small ratios of the timestep to the cyclotron period. In order to extend applicability of the mover to systems with plasma frequency exceeding the cyclotron frequency such as one may have with fully neutralized drift compression of a heavy-ion beam we have developed an implicit version of the mover. A first step in this direction, in which the polarization charge was added to the field solver, was described previously. Here we describe a fully implicit algorithm (which is analogous to the direct-implicit method for conventionalparticle-in-cell simulation), summarize a stability analysis of it, and describe several tests of the resultant code.
Date: July 15, 2008
Creator: Friedman, A.; Grote, D. P.; Vay, J. L. & Cohen, R. H.
System: The UNT Digital Library
Citric Acid-Modified Fenton's Reaction for the Oxidation of Chlorinated Ethylenes in Soil Solution Systems (open access)

Citric Acid-Modified Fenton's Reaction for the Oxidation of Chlorinated Ethylenes in Soil Solution Systems

Fenton's reagent, a solution of hydrogen peroxide and ferrous iron catalyst, is used for an in-situ chemical oxidation of organic contaminants. Sulfuric acid is commonly used to create an acidic condition needed for catalytic oxidation. Fenton's reaction often involves pressure buildup and precipitation of reaction products, which can cause safety hazards and diminish efficiency. We selected citric acid, a food-grade substance, as an acidifying agent to evaluate its efficiencies for organic contaminant removal in Fenton's reaction, and examined the impacts of using citric acid on the unwanted reaction products. A series of batch and column experiments were performed with varying H{sub 2}O{sub 2} concentrations to decompose selected chlorinated ethylenes. Either dissolved iron from soil or iron sulfate salt was added to provide the iron catalyst in the batch tests. Batch experiments revealed that both citric and sulfuric acid systems achieved over 90% contaminant removal rates, and the presence of iron catalyst was essential for effective decontamination. Batch tests with citric acid showed no signs of pressure accumulation and solid precipitations, however the results suggested that an excessive usage of H{sub 2}O{sub 2} relative to iron catalysts (Fe{sup 2+}/H{sub 2}O{sub 2} < 1/330) would result in lowering the efficiency of contaminant …
Date: March 15, 2008
Creator: Seol, Yongkoo & Javandel, Iraj
System: The UNT Digital Library
2007 Plant Metabolic Engineering Gordon Conference and Graduate Research Seminar (open access)

2007 Plant Metabolic Engineering Gordon Conference and Graduate Research Seminar

Plant Metabolic Engineering is an emerging field that integrates a diverse range of disciplines including plant genetics, genomics, biochemistry, chemistry and cell biology. The Gordon-Kenan Graduate Research Seminar (GRS) in Plant Metabolic Engineering was initiated to provide a unique opportunity for future researcher leaders to present their work in this field. It also creates an environment allowing for peer-review and critical assessment of work without the intimidation usually associated with the presence of senior investigators. The GRS immediately precedes the Plant Metabolic Engineering Gordon Research Conference and will be for and by graduate students and post-docs, with the assistance of the organizers listed.
Date: September 15, 2008
Creator: Grotewold, Erich
System: The UNT Digital Library
Evaluation of production samples of the scintillators LaBr3:Ce and LaCl3:Ce (open access)

Evaluation of production samples of the scintillators LaBr3:Ce and LaCl3:Ce

We report on the evaluation of the performance of two recently developed scintillator materials, LaCl{sub 3}:Ce and LaBr{sub 3}:Ce, at the task of gamma ray spectroscopy. Their performance is compared to a standard scintillator used for gamma ray spectroscopy--a 25 mm diameter 25 mm tall cylinder of NaI:Tl. We measure the pulse height, energy resolution, and full-energy efficiency of production LaBr{sub 3}:Ce and LaCl{sub 3}:Ce scintillation crystals of different sizes and geometries for a variety of gamma-ray energies. Using production rather than specially selected crystals will establish whether immediate large-scale use is feasible. The crystal is excited by gamma rays from one of six isotopic sources ({sup 125}I, {sup 241}Am, {sup 57}Co, {sup 22}Na, {sup 137}Cs, and {sup 60}Co) placed 15 cm away from the scintillator. Our measurements show that both LaCl{sub 3} and LaBr{sub 3} outperform NaI:Tl in almost all cases. They outperform NaI:Tl at all energies for the photopeak fraction and counting rate measurements, and for energy resolution at higher energies (above 200 keV for LaCl{sub 3} and 75 keV for LaBr{sub 3}). The performance of production crystals is excellent and these scintillators should be considered for immediate use in systems where stopping power and energy resolution are …
Date: September 15, 2005
Creator: Choong, Woon-Seng; Derenzo, Stephen E. & Moses, William W.
System: The UNT Digital Library
PREDICTION OF CHARACTERISTIC LENGTH AND FRACTURE TOUGHNESS IN DUCTILE-BRITTLE TRANSITION (open access)

PREDICTION OF CHARACTERISTIC LENGTH AND FRACTURE TOUGHNESS IN DUCTILE-BRITTLE TRANSITION

Finite element method was used to analyze the three-point bend experimental data of A533B-1 pressure vessel steel obtained by Sherry, Lidbury, and Beardsmore [1] from -160 to -45 C within the ductile-brittle transition regime. As many researchers have shown, the failure stress ({sigma}{sub f}) of the material could be approximated as a constant. The characteristic length, or the critical distance (r{sub c}) from the crack tip, at which {sigma}{sub f} is reached, is shown to be temperature dependent based on the crack tip stress field calculated by the finite element method. With the J-A{sub 2} two-parameter constraint theory in fracture mechanics, the fracture toughness (J{sub C} or K{sub JC}) can be expressed as a function of the constraint level (A{sub 2}) and the critical distance r{sub c}. This relationship is used to predict the fracture toughness of A533B-1 in the ductile-brittle transition regime with a constant {sigma}{sub f} and a set of temperature-dependent r{sub c}. It can be shown that the prediction agrees well with the test data for wide range of constraint levels from shallow cracks (a/W= 0.075) to deep cracks (a/W= 0.5), where a is the crack length and W is the specimen width.
Date: April 15, 2008
Creator: Lam, P
System: The UNT Digital Library
Spatial resolution limits for synchrotron-based infrared spectromicroscopy (open access)

Spatial resolution limits for synchrotron-based infrared spectromicroscopy

Detailed spatial resolution tests were performed on beamline 1.4.4 at the Advanced Light Source synchrotron facility in Berkeley, CA. The high-brightness synchrotron source is coupled at this beamline to a Thermo-Electron Continumum XL infrared microscope. Two types of resolution tests in both the mid-IR (using a KBr beamsplitter and an MCT-A* detector) and in the near-IR (using a CaF2 beamsplitter and an InGaAS detector) were performed and compared to a simple diffraction-limited spot size model. At the shorter wavelengths in the near-IR the experimental results begin to deviate from only diffraction-limited. The entire data set is fit using a combined diffraction-limit and demagnified electron beam source size model. This description experimentally verifies how the physical electron beam size of the synchrotron source demagnified to the sample stage on the endstation begins to dominate the focussed spot size and therefore spatial resolution at higher energies. We discuss how different facilities, beamlines, and microscopes will affect the achievable spatial resolution.
Date: October 15, 2007
Creator: Levenson, Erika; Lerch, Philippe & Martin, Michael C.
System: The UNT Digital Library
Basalt weathering rates on Earth and the duration of liquid water on the plains of Gusev Crater, Mars (open access)

Basalt weathering rates on Earth and the duration of liquid water on the plains of Gusev Crater, Mars

Where Martian rocks have been exposed to liquid water, chemistry versus depth profiles could elucidate both Martian climate history and potential for life. The persistence of primary minerals in weathered profiles constrains the exposure time to liquid water: on Earth, mineral persistence times range from {approx}10 ka (olivine) to {approx}250 ka (glass) to {approx}1Ma (pyroxene) to {approx}5Ma (plagioclase). Such persistence times suggest mineral persistence minima on Mars. However, Martian solutions may have been more acidic than on Earth. Relative mineral weathering rates observed for basalt in Svalbard (Norway) and Costa Rica demonstrate that laboratory pH trends can be used to estimate exposure to liquid water both qualitatively (mineral absence or presence) and quantitatively (using reactive transport models). Qualitatively, if the Martian solution pH > {approx}2, glass should persist longer than olivine; therefore, persistence of glass may be a pH-indicator. With evidence for the pH of weathering, the reactive transport code CrunchFlow can quantitatively calculate the minimum duration of exposure to liquid water consistent with a chemical profile. For the profile measured on the surface of Humphrey in Gusev Crater, the minimum exposure time is 22 ka. If correct, this estimate is consistent with short-term, episodic alteration accompanied by ongoing surface …
Date: March 15, 2008
Creator: Steefel, Carl; Hausrath, E. M.; Navarre-Sitchler, A. K.; Sak, P. B.; Steefel, C. & Brantley, S. L.
System: The UNT Digital Library
Sugar-mediated semidian oscillation of gene expression in the cassava storage root regulates starch synthesis (open access)

Sugar-mediated semidian oscillation of gene expression in the cassava storage root regulates starch synthesis

Starch branching enzyme (SBE) activity in the cassava storage root exhibited a diurnal fluctuation, dictated by a transcriptional oscillation of the corresponding SBE genes. The peak of SBE activity coincided with the onset of sucrose accumulation in the storage, and we conclude that the oscillatory mechanism keeps the starch synthetic apparatus in the storage root sink in tune with the flux of sucrose from the photosynthetic source. When storage roots were uncoupled from the source, SBE expression could be effectively induced by exogenous sucrose. Turanose, a sucrose isomer that cannot be metabolized by plants, mimicked the effect of sucrose, demonstrating that downstream metabolism of sucrose was not necessary for signal transmission. Also glucose and glucose-1-P induced SBE expression. Interestingly, induction by sucrose, turanose and glucose but not glucose-1-P sustained an overt semidian (12-h) oscillation in SBE expression and was sensitive to the hexokinase (HXK) inhibitor glucosamine. These results suggest a pivotal regulatory role for HXK during starch synthesis. Abscisic acid (ABA) was another potent inducer of SBE expression. Induction by ABA was similar to that of glucose-1-P in that it bypassed the semidian oscillator. Both the sugar and ABA signaling cascades were disrupted by okadaic acid, a protein phosphatase inhibitor. …
Date: January 15, 2008
Creator: Jansson, Christer; Baguma, Yona; Sun, Chuanxin; Boren, Mats; Olsson, Helena; Rosenqvist, Sara et al.
System: The UNT Digital Library
Ground Penetrating Radar in Hydrogeophysics (open access)

Ground Penetrating Radar in Hydrogeophysics

To meet the needs of a growing population and to provide us with a higher quality of life, increasing pressures are being placed on our environment through the development of agriculture, industry, and infrastructures. Soil erosion, groundwater depletion, salinization, and pollution have been recognized for decades as major threats to ecosystems and human health. More recently, the progressive substitution of fossil fuels by biofuels for energy production and climate change have been recognized as potential threats to our water resources and sustained agricultural productivity. The vadose zone mediates many of the processes that govern water resources and quality, such as the partition of precipitation into infiltration and runoff , groundwater recharge, contaminant transport, plant growth, evaporation, and energy exchanges between the Earth's surface and its atmosphere. It also determines soil organic carbon sequestration and carbon-cycle feedbacks, which could substantially impact climate change. The vadose zone's inherent spatial variability and inaccessibility precludes direct observation of the important subsurface processes. In a societal context where the development of sustainable and optimal environmental management strategies has become a priority, there is a strong prerequisite for the development of noninvasive characterization and monitoring techniques of the vadose zone. In particular, hydrogeophysical approaches applied at …
Date: January 15, 2008
Creator: Hubbard, Susan; Lambot, S.; Binley, A.; Slob, E. & Hubbard, S.
System: The UNT Digital Library
The continental margin is a key source of iron to the HNLC North Pacific Ocean (open access)

The continental margin is a key source of iron to the HNLC North Pacific Ocean

Here we show that labile particulate iron and manganese concentrations in the upper 500m of the Western Subarctic Pacific, an iron-limited High Nutrient Low Chlorophyll (HNLC) region, have prominent subsurface maxima between 100-200 m, reaching 3 nM and 600 pM, respectively. The subsurface concentration maxima in particulate Fe are characterized by a more reduced oxidation state, suggesting a source from primary volcagenic minerals such as from the Kuril/Kamchatka margin. The systematics of these profiles suggest a consistently strong lateral advection of labile Mn and Fe from redox-mobilized labile sources at the continental shelf supplemented by a more variable source of Fe from the upper continental slope. This subsurface supply of iron from the continental margin is shallow enough to be accessible to the surface through winter upwelling and vertical mixing, and is likely a key source of bioavailable Fe to the HNLC North Pacific.
Date: January 15, 2008
Creator: Lam, P. J. & Bishop, J. K. B
System: The UNT Digital Library
Electrokinetic Power Generation from Liquid Water Microjets (open access)

Electrokinetic Power Generation from Liquid Water Microjets

Although electrokinetic effects are not new, only recently have they been investigated for possible use in energy conversion devices. We have recently reported the electrokinetic generation of molecular hydrogen from rapidly flowing liquid water microjets [Duffin et al. JPCC 2007, 111, 12031]. Here, we describe the use of liquid water microjets for direct conversion of electrokinetic energy to electrical power. Previous studies of electrokinetic power production have reported low efficiencies ({approx}3%), limited by back conduction of ions at the surface and in the bulk liquid. Liquid microjets eliminate energy dissipation due to back conduction and, measuring only at the jet target, yield conversion efficiencies exceeding 10%.
Date: February 15, 2008
Creator: Duffin, Andrew M. & Saykally, Richard J.
System: The UNT Digital Library
Measurement of the Decay B- to D*0 e- anti-nu_e (open access)

Measurement of the Decay B- to D*0 e- anti-nu_e

Using 226 million B{bar B} events recorded on the {Upsilon}(4S) resonance with the BABAR detector at the SLAC e{sup +}e{sup -} PEP-II storage rings, they reconstruct B{sup -} {yields} D*{sup 0}e{sup -}{bar {nu}}{sub e} decays using the decay chain D*{sup 0} {yields} D{sup 0}{pi}{sup 0} and D{sup 0} {yields} K{sup -} {pi}{sup +}. From the dependence of their differential rate on the w, the dot product of the four-velocities of B{sup -} and D*{sup 0}, and using the form factor description by Caprini et al. with the parameters F(1) and {rho}{sub 1{sub 1}}{sup 2}, they obtain the results {rho}{sub A{sub 1}}{sup 2} = 1.16 {+-} 0.06 {+-} 0.08, F(1) {center_dot} |V{sub cb}| = (35.9 {+-} 0.6 {+-} 1.4) {center_dot} 10{sup -3}, and {beta}(B{sup -} {yields} D*{sup 0} e{sup -}{bar {nu}}{sub e}) = (5.56 {+-} 0.08 {+-} 0.41)%.
Date: January 15, 2008
Creator: Aubert, B.
System: The UNT Digital Library
Comparing FRACHEM and TOUGHREACT for reactive transport modelingof brine-rock interactions in enhanced geothermal systems (EGS) (open access)

Comparing FRACHEM and TOUGHREACT for reactive transport modelingof brine-rock interactions in enhanced geothermal systems (EGS)

Coupled modelling of fluid flow and reactive transport ingeothermal systems is challenging because of reservoir conditions such ashigh temperatures, elevated pressures and sometimes high salinities ofthe formation fluids. Thermal hydrological-chemical (THC) codes, such asFRACHEM and TOUGHREACT, have been developed to evaluate the long-termhydrothermal and chemical evolution of exploited reservoirs. In thisstudy, the two codes were applied to model the same geothermal reservoir,to forecast reservoir evolution using respective thermodynamic andkinetic input data. A recent (unreleased) TOUGHREACT version allows theuse of either an extended Debye-Hu?ckel or Pitzer activity model forcalculating activity coefficients, while FRACHEM was designed to use thePitzer formalism. Comparison of models results indicate that differencesin thermodynamic equilibrium constants, activity coefficients andkinetics models can result in significant differences in predictedmineral precipitation behaviour and reservoir-porosity evolution.Differences in the calculation schemes typically produce less differencein model outputs than differences in input thermodynamic and kineticdata, with model results being particularly sensitive to differences inion-interaction parameters for highsalinity systems.
Date: November 15, 2005
Creator: Andre, L.; Spycher, N.; Xu, T.; Pruess, K. & Vuataz, F.-D.
System: The UNT Digital Library
Promising X-ray fluorescence tests for superconducting tunneljunction detector (open access)

Promising X-ray fluorescence tests for superconducting tunneljunction detector

Scientists in the Physical Biosciences Division of the Ernest Orlando Berkeley National Laboratory (Berkeley Lab) studying transition metals in proteins with fluorescence-detected L-edge absorption spectroscopy have found the measurements to be extremely challenging. The difficulty is that the metal centers are present in very dilute concentrations so that their weak fluorescence is often obscured by strong background signals carbon and oxygen. To solve this problem, the Berkeley group has been working with researchers from the Advanced Detector Group at the Lawrence Livermore National Laboratory on an energy-dispersive superconducting tunnel junction x-ray detector. These devices in principle have the energy resolution needed to reveal the metal signal. The most recent results with the latest version of the detector on Beamline 4.0.1-2 at the Advanced Light Source (ALS) illustrate the promise of the cryogenic detector strategy not only for this application but also for spectroscopy of other types of dilute samples. Transition-metal complexes are key elements in many biologically important processes that are catalyzed by proteins (enzymes), photosynthesis being a prime example. The changes in that occur in electronic structure throughout a catalytic cycle are the subject of much research aimed at understanding the mechanisms of these processes. L-edge x-ray spectroscopy offers …
Date: May 15, 2001
Creator: Friedrich, Stephan & Robinson, Arthur L.
System: The UNT Digital Library
LUsim: A Framework for Simulation-Based Performance Modelingand Prediction of Parallel Sparse LU Factorization (open access)

LUsim: A Framework for Simulation-Based Performance Modelingand Prediction of Parallel Sparse LU Factorization

Sparse parallel factorization is among the most complicated and irregular algorithms to analyze and optimize. Performance depends both on system characteristics such as the floating point rate, the memory hierarchy, and the interconnect performance, as well as input matrix characteristics such as such as the number and location of nonzeros. We present LUsim, a simulation framework for modeling the performance of sparse LU factorization. Our framework uses micro-benchmarks to calibrate the parameters of machine characteristics and additional tools to facilitate real-time performance modeling. We are using LUsim to analyze an existing parallel sparse LU factorization code, and to explore a latency tolerant variant. We developed and validated a model of the factorization in SuperLU_DIST, then we modeled and implemented a new variant of slud, replacing a blocking collective communication phase with a non-blocking asynchronous point-to-point one. Our strategy realized a mean improvement of 11percent over a suite of test matrices.
Date: April 15, 2008
Creator: Univ. of California, San Diego
System: The UNT Digital Library