101 Matching Results

Results open in a new window/tab.

A Hierarchical Control Architecture for a PEBB-Based ILC Marx Modulator (open access)

A Hierarchical Control Architecture for a PEBB-Based ILC Marx Modulator

The idea of building power conversion systems around Power Electronic Building Blocks (PEBBs) was initiated by the U.S. Office of Naval Research in the mid 1990s. A PEBB-based design approach is advantageous in terms of power density, modularity, reliability, and serviceability. It is obvious that this approach has much appeal for pulsed power conversion including the International Linear Collider (ILC) klystron modulator application. A hierarchical control architecture has the inherent capability to support the integration of PEBBs. This has already been successfully demonstrated in a number of industrial applications in the recent past. This paper outlines the underlying concepts of a hierarchical control architecture for a PEBB-based Marx-topology ILC klystron modulator. The control in PEBB-based power conversion systems can be functionally partitioned into (three) hierarchical layers; system layer, application layer, and PEBB layer. This has been adopted here. Based on such a hierarchical partition, the interfaces are clearly identified and defined and, consequently, are easily characterised. A conceptual design of the hardware manager, executing low-level hardware oriented tasks, is detailed. In addition, the idea of prognostics is briefly discussed.
Date: December 15, 2011
Creator: Macken, K.; Burkhart, C.; Larsen, R.; Nguyen, M. N. & Olsen, J.
System: The UNT Digital Library
Insert Coil Test for HEP High Field Magnets Using YBCO Coated Conductor Tapes (open access)

Insert Coil Test for HEP High Field Magnets Using YBCO Coated Conductor Tapes

The final beam cooling stages of a Muon Collider may require DC solenoid magnets with magnetic fields of 30-50 T. In this paper we present progress in insert coil development using commercially available YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} Coated Conductor. Technological aspects covered in the development, including coil geometry, insulation, manufacturing process and testing are summarized and discussed. Test results of double pancake coils operated in liquid nitrogen and liquid helium are presented and compared with the performance of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} tape short samples.
Date: June 15, 2011
Creator: Lombardo, V.; Barzi, E.; Turrioni, D. & Zlobin, A. V.
System: The UNT Digital Library
Review of Standard Tau Decays From the B-Factory Experiments (open access)

Review of Standard Tau Decays From the B-Factory Experiments

B-factories have been successfully operating for more than 8 years, providing an unprecedented data sample of e{sup +}e{sup 0} {yields} hadrons events. The BABAR and Belle experiments have in fact already collected over 550 fb{sup -1} and 800 fb{sup -1} respectively at the {Upsilon}(4s) center-of-mass (CM) energy. At this energy, the cross-section for tau production is of the same order of the cross-section for b production: {sigma}(b{bar b}) {approx} 1.1 nb {approx} {sigma}({tau}{sup +}{tau}{sup -}) {approx} 0.9 nb. For this reason, B-factories can now be considered also Tau-factories. A review of the most recent results on standard tau decays from the BABAR and Belle experiments is presented in this article.
Date: November 15, 2011
Creator: Salvatore, F. & /Royal Holloway, U. of London
System: The UNT Digital Library
Thermal dissociation behavior and dissociation enthalpies of methane-carbon dioxide mixed hydrates (open access)

Thermal dissociation behavior and dissociation enthalpies of methane-carbon dioxide mixed hydrates

Replacement of methane with carbon dioxide in hydrate has been proposed as a strategy for geologic sequestration of carbon dioxide (CO{sub 2}) and/or production of methane (CH{sub 4}) from natural hydrate deposits. This replacement strategy requires a better understanding of the thermodynamic characteristics of binary mixtures of CH{sub 4} and CO{sub 2} hydrate (CH{sub 4}-CO{sub 2} mixed hydrates), as well as thermophysical property changes during gas exchange. This study explores the thermal dissociation behavior and dissociation enthalpies of CH{sub 4}-CO{sub 2} mixed hydrates. We prepared CH{sub 4}-CO{sub 2} mixed hydrate samples from two different, well-defined gas mixtures. During thermal dissociation of a CH{sub 4}-CO{sub 2} mixed hydrate sample, gas samples from the head space were periodically collected and analyzed using gas chromatography. The changes in CH{sub 4}-CO{sub 2} compositions in both the vapor phase and hydrate phase during dissociation were estimated based on the gas chromatography measurements. It was found that the CO{sub 2} concentration in the vapor phase became richer during dissociation because the initial hydrate composition contained relatively more CO{sub 2} than the vapor phase. The composition change in the vapor phase during hydrate dissociation affected the dissociation pressure and temperature; the richer CO{sub 2} in the vapor …
Date: February 15, 2011
Creator: Kwon, T.H.; Kneafsey, T.J. & Rees, E.V.L.
System: The UNT Digital Library
Unitarity Constraints on Asymmetric Freeze-In (open access)

Unitarity Constraints on Asymmetric Freeze-In

This paper considers unitarity and CPT constraints on asymmetric freeze-in, the use of freeze-in to store baryon number in a dark sector. In this scenario, Sakharov's out of equilibrium condition is satisfied by placing the visible and hidden sectors at different temperatures while a net visible baryon number is produced by storing negative baryon number in a dark sector. It is shown that unitarity and CPT lead to unexpected cancellations. In particular, the transfer of baryon number cancels completely at leading order. This note has shown that if two sectors are in thermal equilibrium with themselves, but not with each other, then the leading effect transferring conserved quantities between the two sectors is of order the the weak coupling connecting them to the third power. When freeze-in is used to produce a net baryon number density, the leading order effect comes from {Omicron}({lambda}{sup 3}) diagrams where the intermediate state that goes on-shell has a different visible baryon number than the final state visible baryon number. Models in which the correct baryon number is generated with freeze-in as the dominant source of abundance, typically require {lambda} {approx}> 10{sup -6} and m{sub bath} {approx}> TeV. m{sub bath} is the mass of the …
Date: August 15, 2011
Creator: Hook, Anson
System: The UNT Digital Library
New Prospects in High Energy Astrophysics (open access)

New Prospects in High Energy Astrophysics

Recent discoveries using TeV, X-ray and radio telescopes as well as Ultra High Energy Cosmic Ray arrays are leading to new insights into longstanding puzzles in high energy astrophysics. Many of these insights come from combining observations throughout the electromagnetic and other spectra as well as evidence assembled from different types of source to propose general principles. Issues discussed in this general overview include methods of accelerating relativistic particles, and amplifying magnetic field, the dynamics of relativistic outflows and the nature of the prime movers that power them. Observational approaches to distinguishing hadronic, leptonic and electromagnetic outflows and emission mechanisms are discussed along with probes of the velocity field and the confinement mechanisms. Observations with GLAST promise to be very prescriptive for addressing these problems.
Date: November 15, 2011
Creator: Blandford, Roger
System: The UNT Digital Library
Built-in and Induced Polarization Across LaAlO3/SrTiO3 Heterojunctions (open access)

Built-in and Induced Polarization Across LaAlO3/SrTiO3 Heterojunctions

Ionic crystals terminated at oppositely charged polar surfaces are inherently unstable and expected to undergo surface reconstructions to maintain electrostatic stability. Essentially, an electric field that arises between oppositely charged atomic planes gives rise to a built-in potential that diverges with thickness. Here we present evidence of such a built-in potential across polar LaAlO{sub 3} thin films grown on SrTiO{sub 3} substrates, a system well known for the electron gas that forms at the interface. By performing tunneling measurements between the electron gas and metallic electrodes on LaAlO{sub 3} we measure a built-in electric field across LaAlO{sub 3} of 80.1 meV/{angstrom}. Additionally, capacitance measurements reveal the presence of an induced dipole moment across the heterostructure. We forsee use of the ionic built-in potential as an additional tuning parameter in both existing and novel device architectures, especially as atomic control of oxide interfaces gains widespread momentum.
Date: August 15, 2011
Creator: Guneeta, Singh-Bhalla
System: The UNT Digital Library
2011 Organometallic Chemistry (July 10-15, 2011, Salve Regina University, Newport, RI) (open access)

2011 Organometallic Chemistry (July 10-15, 2011, Salve Regina University, Newport, RI)

Organometallic chemistry has played and will continue to play a significant role in helping us understand the way bonds are made or broken in the presence of a transition metal complex. Current challenges range from the efficient exploitation of energy resources to the creative use of natural and artificial enzymes. Most of the new advances in the area are due to our extended understanding of processes at a molecular level due to new mechanistic studies, techniques to detect reaction intermediates and theory. The conference will bring the most recent advances in the field including nanocatalysis, surface organometallic chemistry, characterization techniques, new chemical reactivity and theoretical approaches along with applications to organic synthesis and the discovery of new materials. The Conference will bring together a collection of investigators who are at the forefront of their field, and will provide opportunities for junior scientists and graduate students to present their work in poster format and exchange ideas with leaders in the field. Six outstanding posters will be selected for short talks. The collegial atmosphere of this Conference, with programmed discussion sessions as well as opportunities for informal gatherings in the afternoons and evenings, provides an avenue for scientists from different disciplines to …
Date: July 15, 2011
Creator: Bunel, Dr. Emilio
System: The UNT Digital Library
Theory of Two-Magnon Raman Scattering in Iron Pnictides and Chalcogenides (open access)

Theory of Two-Magnon Raman Scattering in Iron Pnictides and Chalcogenides

Although the parent iron-based pnictides and chalcogenides are itinerant antiferromagnets, the use of local moment picture to understand their magnetic properties is still widespread. We study magnetic Raman scattering from a local moment perspective for various quantum spin models proposed for this new class of superconductors. These models vary greatly in the level of magnetic frustration and show a vastly different two-magnon Raman response. Light scattering by two-magnon excitations thus provides a robust and independent measure of the underlying spin interactions. In accord with other recent experiments, our results indicate that the amount of magnetic frustration in these systems may be small.
Date: August 15, 2011
Creator: Chen, C. C.
System: The UNT Digital Library
ADDING REALISM TO NUCLEAR MATERIAL DISSOLVING ANALYSIS (open access)

ADDING REALISM TO NUCLEAR MATERIAL DISSOLVING ANALYSIS

Two new criticality modeling approaches have greatly increased the efficiency of dissolver operations in H-Canyon. The first new approach takes credit for the linear, physical distribution of the mass throughout the entire length of the fuel assembly. This distribution of mass is referred to as the linear density. Crediting the linear density of the fuel bundles results in using lower fissile concentrations, which allows higher masses to be charged to the dissolver. Also, this approach takes credit for the fact that only part of the fissile mass is wetted at a time. There are multiple assemblies stacked on top of each other in a bundle. On average, only 50-75% of the mass (the bottom two or three assemblies) is wetted at a time. This means that only 50-75% (depending on operating level) of the mass is moderated and is contributing to the reactivity of the system. The second new approach takes credit for the progression of the dissolving process. Previously, dissolving analysis looked at a snapshot in time where the same fissile material existed both in the wells and in the bulk solution at the same time. The second new approach models multiple consecutive phases that simulate the fissile material …
Date: August 15, 2011
Creator: Williamson, B.
System: The UNT Digital Library
USE OF THE AERIAL MEASUREMENT SYSTEM HELICOPTER EMERGENCY RESPONSE ACQUISITION SYSTEMS WITH GEOGRAPHIC INFORMATION SYSTEM FOR RADIOACTIVE SOIL REMEDIATION - [11504] (open access)

USE OF THE AERIAL MEASUREMENT SYSTEM HELICOPTER EMERGENCY RESPONSE ACQUISITION SYSTEMS WITH GEOGRAPHIC INFORMATION SYSTEM FOR RADIOACTIVE SOIL REMEDIATION - [11504]

The Aerial Measurement System (AMS) Helicopter Emergency Response Acquisition System provides a thorough and economical means to identify and characterize the contaminants for large area radiological surveys. The helicopter system can provide a 100-percent survey of an area that qualifies as a scoping survey under the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) methodology. If the sensitivity is adequate when compared to the clean up values, it may also be used for the characterization survey. The data from the helicopter survey can be displayed and manipulated to provide invaluable data during remediation activities.
Date: February 15, 2011
Creator: CT, BROCK
System: The UNT Digital Library
TIME-DEPENDENT PHASE SPACE MEASUREMENTS OF THE LONGITUDINALLY COMPRESSING BEAM IN NDCX-I (open access)

TIME-DEPENDENT PHASE SPACE MEASUREMENTS OF THE LONGITUDINALLY COMPRESSING BEAM IN NDCX-I

The Neutralized Drift Compression Experiment (NDCXI) generates high intensity ion beams to explore Warm Dense Matter physics. A {approx}150 kV, {approx}500 ns modulating voltage pulse is applied to a {approx}300 kV, 5-10 {mu}s, 25 mA K+ ion beam across a single induction gap. The velocity modulated beam compresses longitudinally during ballistic transport along a space charge neutralizing plasma transport line, resulting in {approx}3A peak current with {approx}2-3 ns pulse durations (FWHM) at the target plane. Transverse final focusing is accomplished with a {approx}8 T, 10 cm long pulsed solenoid magnet. Time-dependent electrostatic focusing in the induction gap, and chromatic aberrations in the final focus optics limit the peak fluenceat the target plane for the compressed beam pulse. We report on time-dependent phase space measurements of the compressed pulse in the ballistic transport beamline, and measurement of the time-dependent radial impulses derived from the interaction of the beam and the induction gap voltage. We present results of start-to-end simulations to benchmark the experiments. Fast correction strategies are discussed with application to both NDCX-I and the soon to be commissioned NDCX-II accelerators.
Date: March 15, 2011
Creator: LBNL; Lidia, S.M.; Bazouin, G. & Seidl, P.A.
System: The UNT Digital Library
Joint inversion of marine seismic AVA and CSEM data using statistical rock-physics models and Markov random fields: Stochastic inversion of AVA and CSEM data (open access)

Joint inversion of marine seismic AVA and CSEM data using statistical rock-physics models and Markov random fields: Stochastic inversion of AVA and CSEM data

Joint inversion of seismic AVA and CSEM data requires rock-physics relationships to link seismic attributes to electrical properties. Ideally, we can connect them through reservoir parameters (e.g., porosity and water saturation) by developing physical-based models, such as Gassmann’s equations and Archie’s law, using nearby borehole logs. This could be difficult in the exploration stage because information available is typically insufficient for choosing suitable rock-physics models and for subsequently obtaining reliable estimates of the associated parameters. The use of improper rock-physics models and the inaccuracy of the estimates of model parameters may cause misleading inversion results. Conversely, it is easy to derive statistical relationships among seismic and electrical attributes and reservoir parameters from distant borehole logs. In this study, we develop a Bayesian model to jointly invert seismic AVA and CSEM data for reservoir parameter estimation using statistical rock-physics models; the spatial dependence of geophysical and reservoir parameters are carried out by lithotypes through Markov random fields. We apply the developed model to a synthetic case, which simulates a CO{sub 2} monitoring application. We derive statistical rock-physics relations from borehole logs at one location and estimate seismic P- and S-wave velocity ratio, acoustic impedance, density, electrical resistivity, lithotypes, porosity, and water …
Date: September 15, 2011
Creator: Chen, J. & Hoversten, G.M.
System: The UNT Digital Library
Experimental Investigation of Excited-State Lifetimes in Atomic Ytterbium (open access)

Experimental Investigation of Excited-State Lifetimes in Atomic Ytterbium

Lifetimes of 21 excited states in atomic Yb were measured using time-resolved fluorescence detection following pulsed laser excitation. The lifetime of the 4f{sup 14}5d6s {sup 3}D{sub 1} state, which is of particular importance for a proposed study of parity nonconservation in atoms, was measured to be 380(30) ns.
Date: November 15, 2011
Creator: Bowers, C. J.; Budker, D.; Commins, E. D.; DeMille, D.; Freedman, S. J.; Nguyen, A. -T. et al.
System: The UNT Digital Library
Dissecting the Wjj Anomaly: Diagnostic Tests of a Leptophobic Z' (open access)

Dissecting the Wjj Anomaly: Diagnostic Tests of a Leptophobic Z'

We examine the scenario where a leptophobic Z{prime} boson accounts for the excess of events in the Wjj channel as observed by CDF. We assume generation independent couplings for the Z{prime} and obtain allowed regions for the four hadronic couplings using the measured cross section as well as constraints from dijet production at UA2. These coupling regions translate into well-determined rates for the associated production of Z/{gamma} + Z{prime} at the Tevatron and LHC, as well as W + Z{prime} at the LHC,that are directly correlated with the Wjj rate observed at the Tevatron. The Wjj rate at the LHC is large and this channel should be observed soon once the SM backgrounds are under control. The rates for Z/{gamma} + Z{prime} associated production are smaller, and these processes should not yet have been observed at the Tevatron given the expected SM backgrounds. In addition, we show that more coupling information is obtainable from the M{sub WZ{prime}} distribution. Once detected, these processes will provide further valuable information on the Z{prime} boson couplings.
Date: August 15, 2011
Creator: Hewett, J. L. & Rizzo, T. G.
System: The UNT Digital Library
Towards tera terra: Terabase sequencing of terrestrial metagenomics (open access)

Towards tera terra: Terabase sequencing of terrestrial metagenomics

Microbial ecologists are taking a metagenomics approach to analyze complex and diverse soil microbial communities.
Date: June 15, 2011
Creator: Jansson, J.
System: The UNT Digital Library
Recent BaBar Results on $B$ Decays (open access)

Recent BaBar Results on $B$ Decays

Several recent key results from the BABAR experiment are presented, most using 383.6 fb{sup -1} of data. In particular, the search for B{sup +} {yields} {tau}{sup +}{nu}, inclusive and exclusive measurements of |V{sub ub}|, measurements of b {yields} d{gamma} decays and new observations of rare charmless hadronic decays. The new results provide important experimental constraints on the Standard Model and new physics models. Keywords: B decays; flavor; leptonic; semi-leptonic, radiative, hadronic.
Date: November 15, 2011
Creator: Clark, P.J. & U., /Edinburgh
System: The UNT Digital Library
Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume (open access)

Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume

The Deepwater Horizon oil spill in the Gulf of Mexico is the deepest and largest offshore spill in U.S. history and its impacts on marine ecosystems are largely unknown. Here, we showed that the microbial community functional composition and structure were dramatically altered in a deep-sea oil plume resulting from the spill. A variety of metabolic genes involved in both aerobic and anaerobic hydrocarbon degradation were highly enriched in the plume compared to outside the plume, indicating a great potential for intrinsic bioremediation or natural attenuation in the deep-sea. Various other microbial functional genes relevant to carbon, nitrogen, phosphorus, sulfur and iron cycling, metal resistance, and bacteriophage replication were also enriched in the plume. Together, these results suggest that the indigenous marine microbial communities could play a significant role in biodegradation of oil spills in deep-sea environments.
Date: June 15, 2011
Creator: Lu, Z.; Deng, Y.; Nostrand, J. D. Van; He, Z.; Voordeckers, J.; Zhou, A. et al.
System: The UNT Digital Library
New Dualities in Supersymmetric Chiral Gauge Theories (open access)

New Dualities in Supersymmetric Chiral Gauge Theories

We analyze the phase structure of supersymmetric chiral gauge theories with gauge group SU(N), an antisymmetric, and F {le} N + 3 flavors, in the presence of a cubic superpotential. When F = N + 3 the theory flows to a superconformal fixed point in the infrared, and new dual descriptions of this theory are uncovered. The theory with odd N admits a self-dual magnetic description. For general N, we find an infinite family of magnetic dual descriptions, characterized by arbitrarily large gauge groups and additional classical global symmetries that are truncated by nonperturbative effects. The infrared dynamics of these theories are analyzed using a-maximization, which supports the claim that all these theories flow to the same superconformal fixed point. A very rich phase structure is found when the number of flavors is reduced below N + 3, including a new self-dual point, transitions from conformal to confining, and a nonperturbative instability for F {le} N. We also give examples of chiral theories with antisymmetrics that have nonchiral duals.
Date: August 15, 2011
Creator: Craig, Nathaniel; /Princeton, Inst. Advanced Study /Rutgers U., Piscataway; Essig, Rouven; Hook, Anson; Torroba, Gonzalo & /Stanford U., Phys. Dept. /SLAC
System: The UNT Digital Library
OpenMP for Accelerators (open access)

OpenMP for Accelerators

OpenMP [13] is the dominant programming model for shared-memory parallelism in C, C++ and Fortran due to its easy-to-use directive-based style, portability and broad support by compiler vendors. Similar characteristics are needed for a programming model for devices such as GPUs and DSPs that are gaining popularity to accelerate compute-intensive application regions. This paper presents extensions to OpenMP that provide that programming model. Our results demonstrate that a high-level programming model can provide accelerated performance comparable to hand-coded implementations in CUDA.
Date: March 15, 2011
Creator: Beyer, J C; Stotzer, E J; Hart, A & de Supinski, B R
System: The UNT Digital Library
Recent Developments in SHERPA (open access)

Recent Developments in SHERPA

Some recent QCD-related developments in the SHERPA event generator are presented. In the past decades, event generators such as PYTHIA [1, 2] and HERWIG [3, 4] have been central for nearly all physics analyses at particle physics experiments at the high-energy frontier. This will also hold true at the LHC, where a large number of interesting signals for new particles or new phenomena (the Higgs boson or any other manifestation of the mechanism behind electro-weak symmetry breaking, supersymmetry, extra dimensions etc.) is hampered by a plethora of severe, sometimes overwhelming backgrounds. Nearly all of them are largely influenced by QCD. Therefore it seems fair to say that the success of the LHC in finding new physics may very well depend on a deep and detailed understanding of old physics, like QCD. Examples for this include, among others, the central-jet veto for the vector boson fusion channel for Higgs production or topologies, where gauge bosons emerge in association with many jets, a background for many search channels. In a reflection on increased needs by the experimental community, aiming at higher precision, incorporation of new physics models and so on, the work horses of old have undergone serious renovation efforts, resulting in …
Date: November 15, 2011
Creator: Archibald, Jennifer; Gleisberg, Tanju; Hoeche, Stefan; Krauss, Frank; Schonherr, Marek; Schumann, Steffen et al.
System: The UNT Digital Library
Automatic Black-Box Model Order Reduction using Radial Basis Functions (open access)

Automatic Black-Box Model Order Reduction using Radial Basis Functions

Finite elements methods have long made use of model order reduction (MOR), particularly in the context of fast freqeucny sweeps. In this paper, we discuss a black-box MOR technique, applicable to a many solution methods and not restricted only to spectral responses. We also discuss automated methods for generating a reduced order model that meets a given error tolerance. Numerical examples demonstrate the effectiveness and wide applicability of the method. With the advent of improved computing hardware and numerous fast solution techniques, the field of computational electromagnetics are progressed rapidly in terms of the size and complexity of problems that can be solved. Numerous applications, however, require the solution of a problem for many different configurations, including optimization, parameter exploration, and uncertainly quantification, where the parameters that may be changed include frequency, material properties, geometric dimensions, etc. In such cases, thousands of solutions may be needed, so solve times of even a few minutes can be burdensome. Model order reduction (MOR) may alleviate this difficulty by creating a small model that can be evaluated quickly. Many MOR techniques have been applied to electromagnetic problems over the past few decades, particularly in the context of fast frequency sweeps. Recent works have …
Date: July 15, 2011
Creator: Stephanson, M. B.; Lee, J. F. & White, D. A.
System: The UNT Digital Library
Constitutive relationships for elastic deformation of clay rock: Data Analysis (open access)

Constitutive relationships for elastic deformation of clay rock: Data Analysis

Geological repositories have been considered a feasible option worldwide for storing high-level nuclear waste. Clay rock is one of the rock types under consideration for such purposes, because of its favorable features to prevent radionuclide transport from the repository. Coupled hydromechanical processes have an important impact on the performance of a clay repository, and establishing constitutive relationships for modeling such processes are essential. In this study, we propose several constitutive relationships for elastic deformation in indurated clay rocks based on three recently developed concepts. First, when applying Hooke's law in clay rocks, true strain (rock volume change divided by the current rock volume), rather than engineering strain (rock volume change divided by unstressed rock volume), should be used, except when the degree of deformation is very small. In the latter case, the two strains will be practically identical. Second, because of its inherent heterogeneity, clay rock can be divided into two parts, a hard part and a soft part, with the hard part subject to a relatively small degree of deformation compared with the soft part. Third, for swelling rock like clay, effective stress needs to be generalized to include an additional term resulting from the swelling process. To evaluate …
Date: April 15, 2011
Creator: Liu, H. H.; Rutqvist, J. & Birkholzer, J. T.
System: The UNT Digital Library
Methane Hydrate Dissociation by Depressurization in a Mount Elbert Sandstone Sample: Experimental Observations and Numerical Simulations (open access)

Methane Hydrate Dissociation by Depressurization in a Mount Elbert Sandstone Sample: Experimental Observations and Numerical Simulations

A preserved sample of hydrate-bearing sandstone from the Mount Elbert Test Well was dissociated by depressurization while monitoring the internal temperature of the sample in two locations and the density changes at high spatial resolution using x-ray CT scanning. The sample contained two distinct regions having different porosity and grain size distributions. The hydrate dissociation occurred initially throughout the sample as a result of depressing the pressure below the stability pressure. This initial stage reduced the temperature to the equilibrium point, which was maintained above the ice point. After that, dissociation occurred from the outside in as a result of heat transfer from the controlled temperature bath surrounding the pressure vessel. Numerical modeling of the test using TOUGH+HYDRATE yielded a gas production curve that closely matches the experimentally measured curve.
Date: January 15, 2011
Creator: Kneafsey, T. & Moridis, G.J.
System: The UNT Digital Library