Serial/Series Title

Bodies of revolution having minimum drag at high supersonic airspeeds (open access)

Bodies of revolution having minimum drag at high supersonic airspeeds

Approximate shapes of nonlifting bodies having minimum pressure foredrag at high supersonic airspeeds are calculated. With the aid of Newton's law of resistance, the investigation is carried out for various combinations of the conditions of given body length, base diameter, surface area, and volume. In general, it is found that when body length is fixed, the body has a blunt nose; whereas, when the length is not fixed, the body has a sharp nose. The additional effect of curvature of the flow over the surface is investigated to determine its influence on the shapes for minimum drag. The effect is to increase the bluntness of the shapes in the region of the nose and the curvature in the region downstream of the nose. These shape modifications have, according to calculation, only a slight tendency to reduce drag. Several bodies of revolution of fineness ratios 3 and 5, including the calculated shapes of minimum drag for given length and base diameter and for given base diameter and surface area, were tested at Mach numbers from 2.73 to 6.28. A comparison of theoretical and experimental foredrag coefficients indicates that the calculated minimum-drag bodies are reasonable approximations to the correct shape.
Date: December 14, 1955
Creator: Eggers, A. J., Jr.; Resnikoff, Meyer M. & Dennis, David H.
System: The UNT Digital Library
Aircraft compass characteristics (open access)

Aircraft compass characteristics

From Summary: "A description of the test methods used at the National Bureau of Standards for determining the characteristics of aircraft compasses is given. The methods described are particularly applicable to compasses in which mineral oil is used as the damping liquid. Data on the viscosity and density of certain mineral oils used in United States Navy aircraft compasses are presented. Results of flight tests are presented."
Date: December 14, 1935
Creator: Peterson, John B. & Smith, Clyde W.
System: The UNT Digital Library