Clean energy from municipal solid waste. ERIP technical progress report No. 1. (open access)

Clean energy from municipal solid waste. ERIP technical progress report No. 1.

Just prior to this award and reporting period but as part of this program, EnerTech initiated preliminary pilot scale slurry carbonization experiments with Refuse Derived Fuel (RDF) and preliminary pilot scale combustion experiments with the carbonized RDF slurry fuel. For this award and the time period April 1995--July 1995, several modifications to the pilot plant facilities were completed to improve operational reliability, system performance, and characteristics of the carbonized slurry fuel, based upon the previous plant experiments.
Date: July 14, 1995
Creator: Klosky, M.
Object Type: Report
System: The UNT Digital Library
Conceptual design report: Nuclear materials storage facility renovation. Part 1, Design concept. Part 2, Project management (open access)

Conceptual design report: Nuclear materials storage facility renovation. Part 1, Design concept. Part 2, Project management

The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and …
Date: July 14, 1995
Creator: unknown
Object Type: Report
System: The UNT Digital Library
Conceptual design report: Nuclear materials storage facility renovation. Part 3, Supplemental information (open access)

Conceptual design report: Nuclear materials storage facility renovation. Part 3, Supplemental information

The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and …
Date: July 14, 1995
Creator: unknown
Object Type: Report
System: The UNT Digital Library
Conceptual design report: Nuclear materials storage facility renovation. Part 5, Structural/seismic investigation. Section A report, existing conditions calculations/supporting information (open access)

Conceptual design report: Nuclear materials storage facility renovation. Part 5, Structural/seismic investigation. Section A report, existing conditions calculations/supporting information

The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and …
Date: July 14, 1995
Creator: unknown
Object Type: Report
System: The UNT Digital Library
Conceptual design report: Nuclear materials storage facility renovation. Part 5, Structural/seismic investigation. Section B, Renovation calculations/supporting data (open access)

Conceptual design report: Nuclear materials storage facility renovation. Part 5, Structural/seismic investigation. Section B, Renovation calculations/supporting data

The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and …
Date: July 14, 1995
Creator: unknown
Object Type: Report
System: The UNT Digital Library
Conceptual design report: Nuclear materials storage facility renovation. Part 6, Alternatives study (open access)

Conceptual design report: Nuclear materials storage facility renovation. Part 6, Alternatives study

The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for material and regulatory issues. Correction of the current deficiencies and enhancement …
Date: July 14, 1995
Creator: unknown
Object Type: Report
System: The UNT Digital Library
Conceptual design report: Nuclear materials storage facility renovation. Part 7, Estimate data (open access)

Conceptual design report: Nuclear materials storage facility renovation. Part 7, Estimate data

The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and …
Date: July 14, 1995
Creator: unknown
Object Type: Report
System: The UNT Digital Library
Cost and quality of fuels for electric utility plants, 1994 (open access)

Cost and quality of fuels for electric utility plants, 1994

This document presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. Purpose of this publication is to provide energy decision-makers with accurate, timely information that may be used in forming various perspectives on issues regarding electric power.
Date: July 14, 1995
Creator: unknown
Object Type: Report
System: The UNT Digital Library
High SO{sub 2} removal efficiency testing. Quarterly status report, April-June 1995 (open access)

High SO{sub 2} removal efficiency testing. Quarterly status report, April-June 1995

This project involves testing at six full-scale utility flue gas desulfurization (FGD) systems to evaluate low capital cost upgrades that may allow these systems to achieve up to 98% SO{sub 2} removal efficiency. The upgrades being evaluated mostly involve using performance additives in the FGD systems. The {open_quotes}base{close_quotes} project involved testing at the Tampa Electric Company Big Bend station. All five potential options to the base program have been exercised by DOE, involving testing at Hoosier Energy`s Merom Station (Option I), Southwestern Electric Power Company`s Pirkey Station (Option II), PSI Energy`s Gibson Station (Option III), Duquesne Light`s Elrama Station (Option IV), and New York State Electric and Gas Corporation`s Kintigh Station (Option V). The originally planned testing has been completed for all six sites. The remainder of this document is divided into four sections. Section 2, Project Summary, provides a brief overview of the status of technical efforts on this project. Section 3, Results, summarizes the outcome from technical efforts during the quarter, or results from prior quarters that have not been previously reported. In Section 4, Plans for the Next Reporting Period, an overview is provided of the technical efforts that are anticipated for the third quarter of calendar …
Date: July 14, 1995
Creator: Blythe, G.
Object Type: Report
System: The UNT Digital Library
Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Technical progress report, April 1, 1995--June 30, 1995 (open access)

Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Technical progress report, April 1, 1995--June 30, 1995

The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.
Date: July 14, 1995
Creator: Allison, M. L.
Object Type: Report
System: The UNT Digital Library
Performance evaluation of bound diamond ring tools (open access)

Performance evaluation of bound diamond ring tools

LLNL is collaborating with the Center for Optics Manufacturing (COM) and the American Precision Optics Manufacturers Association (APOMA) to optimize bound diamond ring tools for the spherical generation of high quality optical surfaces. An important element of this work is establishing an experimentally-verified link between tooling properties and workpiece quality indicators such as roughness, subsurface damage and removal rate. In this paper, we report on a standardized methodology for assessing ring tool performance and its preliminary application to a set of commercially-available wheels. Our goals are to (1) assist optics manufacturers (users of the ring tools) in evaluating tools and in assessing their applicability for a given operation, and (2) provide performance feedback to wheel manufacturers to help optimize tooling for the optics industry. Our paper includes measurements of wheel performance for three 2-4 micron diamond bronze-bond wheels that were supplied by different manufacturers to nominally- identical specifications. Preliminary data suggests that the difference in performance levels among the wheels were small.
Date: July 14, 1995
Creator: Piscotty, M. A.; Taylor, J. S. & Blaedel, K. L.
Object Type: Article
System: The UNT Digital Library
Pressure fluctuations as a diagnostic tool for fluidized beds. Technical progress report, April 1--June 30, 1995 (open access)

Pressure fluctuations as a diagnostic tool for fluidized beds. Technical progress report, April 1--June 30, 1995

The first phase of experimentation for the comprehensive similitude study on the two laboratory scale cold-model circulating fluidized beds has been completed. This first phase required the acquisition and analysis of pressure fluctuation data from a 2.0 inch diameter pressurized circulating fluidized bed. The second phase required the matching of each of the 20 experiments in a cold-model twice the size of the smaller 2.0 inch circulating fluidized bed model using similitude relations. Problems of excessive electrostatic buildup were encountered in this second phase. To alleviate these problems, the large model had to be redesigned and reconstructed. The focus of the research this past quarter has been devoted to these modifications. Currently, the new sections have been constructed and the modified circulating fluidized bed is in the process of reassembly. Two related projects were undertaken while the large circulating fluidized bed model was being modified. A bubbling bed was constructed such that pressure fluctuation data could be measured in both bubbling and turbulent fluidization regimes. The purpose of such tests was to relate pressure fluctuation structure in the lower sections of the circulating fluidized bed with phenomena observed in bubbling/turbulent regimes. Two probes designed to measure heat transfer coefficients in …
Date: July 14, 1995
Creator: Brown, R.C.
Object Type: Report
System: The UNT Digital Library
U.S. Department of Energy Office of Inspector General report on audit of acquisition of scientific research at Ames Laboratory (open access)

U.S. Department of Energy Office of Inspector General report on audit of acquisition of scientific research at Ames Laboratory

The Department awards grants and cooperative agreements and contracts to sponsor scientific research at colleges and universities. Compared to cooperative agreements, contracts, particularly management and operating contracts, often impose duplicative and/or unnecessary administrative and compliance burdens on a college or university. Since the Department bears the cost of those additional burdens, the authors audited the cost effectiveness of the Department`s sponsorship of research at Ames Laboratory under a management and operating contract with Iowa State University. The research conducted at Ames is of the type that Congress intended to be sponsored by assistance agreements, rather than contracts. Moreover, they found the contract for managing and operating Ames Laboratory caused micromanagement and unnecessary costs, most of which could have been avoided with a cooperative agreement. However, after completion of the field work, the Department announced initiatives to reduce or eliminate some compliance and oversight burdens associated with management and operating contracts, but did not opt to sponsor research under cooperative agreements. The authors are unable to determine the monetary impact because the initiatives have not been implemented. Nevertheless, they continue to believe that cooperative agreements, having fewer unique bureaucratic requirements, offer the potential for reducing administrative overhead.
Date: July 14, 1995
Creator: unknown
Object Type: Report
System: The UNT Digital Library
X-ray spectroscopy and imaging of a plasma collision (open access)

X-ray spectroscopy and imaging of a plasma collision

The collision of laser-produced plasmas has been diagnosed by x-ray spectroscopy and imaging. The two colliding plasmas are produced on Al thin foils at a distance of 200 to 900 {mu}m irradiated at {lambda} = 0.53 {mu}m with laser intensities of 3 {times} 10{sup 13} to 6 {times} 10{sup 13} W/cm{sup 2}. Interpenetration of the plasmas was visualized by replacing one of the foils material by magnesium. The main diagnostics viewing the inter-target space were time-resolved monochromatic imaging of the 1s{sup 2} 1s3p aluminum line (He{Beta} at {lambda} {minus} 6.635 {Angstrom}). Doppler broadening measurement with a vertical Johann very high resolution spectrograph in the range 6.5--6.7{Angstrom}, space-resolved high resolution spectra of the dielectronic satellites of the 1s-2p 1 yman, space-resolved spectra with a flat-crystal spectrograph in the range 5--7 {Angstrom} and in the range of 43--48 {Angstrom} obtained with a new OHM crystal spectrograph and a pinhole camera. A multifluid eulerian monodimensional hydrodynamic code coupled with a radiative-atomic package provided simulations of the experiments. Hydrodynamic 2D simulations calculating the lateral expansion of the plasma enabled a reliable treatment of reabsorption along the line of sight of the spectrographs. The size the time duration of the collision, the plasma parameters (Te,Ti …
Date: July 14, 1995
Creator: Chenais-Popovics, C.; Rancu, O. & Renaudin, P.
Object Type: Article
System: The UNT Digital Library