Degree Level

37 Matching Results

Results open in a new window/tab.

Automated High Throughput Protein Crystallization Screening at Nanoliter Scale and Protein Structural Study on Lactate Dehydrogenase (open access)

Automated High Throughput Protein Crystallization Screening at Nanoliter Scale and Protein Structural Study on Lactate Dehydrogenase

The purposes of our research were: (1) To develop an economical, easy to use, automated, high throughput system for large scale protein crystallization screening. (2) To develop a new protein crystallization method with high screening efficiency, low protein consumption and complete compatibility with high throughput screening system. (3) To determine the structure of lactate dehydrogenase complexed with NADH by x-ray protein crystallography to study its inherent structural properties. Firstly, we demonstrated large scale protein crystallization screening can be performed in a high throughput manner with low cost, easy operation. The overall system integrates liquid dispensing, crystallization and detection and serves as a whole solution to protein crystallization screening. The system can dispense protein and multiple different precipitants in nanoliter scale and in parallel. A new detection scheme, native fluorescence, has been developed in this system to form a two-detector system with a visible light detector for detecting protein crystallization screening results. This detection scheme has capability of eliminating common false positives by distinguishing protein crystals from inorganic crystals in a high throughput and non-destructive manner. The entire system from liquid dispensing, crystallization to crystal detection is essentially parallel, high throughput and compatible with automation. The system was successfully demonstrated by …
Date: August 9, 2006
Creator: Li, Fenglei
System: The UNT Digital Library
Band anticrossing effects in highly mismatched semiconductor alloys (open access)

Band anticrossing effects in highly mismatched semiconductor alloys

The first five chapters of this thesis focus on studies of band anticrossing (BAC) effects in highly electronegativity- mismatched semiconductor alloys. The concept of bandgap bowing has been used to describe the deviation of the alloy bandgap from a linear interpolation. Bowing parameters as large as 2.5 eV (for ZnSTe) and close to zero (for AlGaAs and ZnSSe) have been observed experimentally. Recent advances in thin film deposition techniques have allowed the growth of semiconductor alloys composed of significantly different constituents with ever- improving crystalline quality (e.g., GaAs{sub 1-x}N{sub x} and GaP{sub 1-x}N{sub x} with x {approx}< 0.05). These alloys exhibit many novel and interesting properties including, in particular, a giant bandgap bowing (bowing parameters > 14 eV). A band anticrossing model has been developed to explain these properties. The model shows that the predominant bowing mechanism in these systems is driven by the anticrossing interaction between the localized level associated with the minority component and the band states of the host. In this thesis I discuss my studies of the BAC effects in these highly mismatched semiconductors. It will be shown that the results of the physically intuitive BAC model can be derived from the Hamiltonian of the many-impurity …
Date: September 9, 2002
Creator: Wu, Junqiao
System: The UNT Digital Library
Biomimetic Nanocomposites of Calcium Phosphate and Self-Assembling Triblock and Pentablock Copolymers (open access)

Biomimetic Nanocomposites of Calcium Phosphate and Self-Assembling Triblock and Pentablock Copolymers

In an effort to mimic the growth of natural bone, self-assembling, micelle and gel-forming copolymers were used as a template for calcium phosphate precipitation. Because of the cationic characteristics imparted by PDEAEM end group additions to commercially available Pluronic{reg_sign} Fl27, a direct ionic attraction mechanism was utilized and a polymer-brushite nanocomposite spheres were produced. Brushite coated spherical micelles with diameters of {approx}40 nm, and agglomerates of these particles (on the order of 0.5 {mu}m) were obtained. Thickness and durability of the calcium phosphate coating, and the extent of agglomeration were studied. The coating has been shown to be robust enough to retain its integrity even below polymer critical micelle concentration and/or temperature. Calcium phosphate-polymer gel nanocomposites were also prepared. Gel samples appeared as a single phase network of agglomerated spherical micelles, and had a final calcium phosphate concentration of up to 15 wt%. Analysis with x-ray diffraction and NMR indicated a disordered brushite phase with the phosphate groups linking inorganic phase to the polymer.
Date: August 9, 2006
Creator: Enlow, Drew Lenzen
System: The UNT Digital Library
Characterization of Zns-GaP Naon-composites (open access)

Characterization of Zns-GaP Naon-composites

It proved possible to produce consistent, high-quality nanocrystalline ZnS powders with grain sizes as small as 8 nm. These powders are nano-porous and are readily impregnated with GaP precursor, although inconsistently. Both crystal structure and small grain size of the ZnS can be maintained through the use of GaP. Heat treatment of the impregnated powders results in a ZnS-GaP composite structure where the grain sizes of the phases are on the order of 10--20 nm. Conventional powder processing should be able to produce optically dense ceramic compacts with improved mechanical properties and suitable IR transmission.
Date: December 9, 1993
Creator: Todd, V.
System: The UNT Digital Library
[Chemistry Thesis] Part 2: High Intensity Light Sources (open access)

[Chemistry Thesis] Part 2: High Intensity Light Sources

A stable carbon arc operated in controlled atmosphere is described. The arc was designed to serve as a light source during lifetime studies of the B/sup 2/ SIGMA state of the CN molecule. The CN radiation from the plasma of the arc was investigated and found to have a brightness temperature of 5500 icient laborato K at lambda 3883 A. This is considerably higher than an estimate of the value required for lifetime measurements. The stability of the carbon arc under various conditions is discussed. For successful lifetime measurements, the light source employed must have a high brightness temperature (intensity). A method for the determination of the brightness temperature of a light source at a specific wave length is described. The method was used for determining the brightness temperatures of some available light sources. Sodium, thallium, and mercury discharge lamps, a medium-pressure mercury arc lamp, and the carbon arc were studied. (auth)
Date: October 9, 1958
Creator: Worden, Earl Fremont, Jr.
System: The UNT Digital Library
Computational Fluid Dynamics Simulation of Fluidized Bed Polymerization Reactors (open access)

Computational Fluid Dynamics Simulation of Fluidized Bed Polymerization Reactors

Fluidized beds (FB) reactors are widely used in the polymerization industry due to their superior heat- and mass-transfer characteristics. Nevertheless, problems associated with local overheating of polymer particles and excessive agglomeration leading to FB reactors defluidization still persist and limit the range of operating temperatures that can be safely achieved in plant-scale reactors. Many people have been worked on the modeling of FB polymerization reactors, and quite a few models are available in the open literature, such as the well-mixed model developed by McAuley, Talbot, and Harris (1994), the constant bubble size model (Choi and Ray, 1985) and the heterogeneous three phase model (Fernandes and Lona, 2002). Most these research works focus on the kinetic aspects, but from industrial viewpoint, the behavior of FB reactors should be modeled by considering the particle and fluid dynamics in the reactor. Computational fluid dynamics (CFD) is a powerful tool for understanding the effect of fluid dynamics on chemical reactor performance. For single-phase flows, CFD models for turbulent reacting flows are now well understood and routinely applied to investigate complex flows with detailed chemistry. For multiphase flows, the state-of-the-art in CFD models is changing rapidly and it is now possible to predict reasonably well …
Date: August 9, 2006
Creator: Fan, Rong
System: The UNT Digital Library
Couples Magnetic and Structural Transitions in High-Purity Dy and Gd5SbxGe4-x (open access)

Couples Magnetic and Structural Transitions in High-Purity Dy and Gd5SbxGe4-x

Magnetic materials exhibiting magnetic phase transitions simultaneously with structural rearrangements of their crystal lattices hold a promise for numerous applications including magnetic refrigeration, magnetomechanical devices and sensors. We undertook a detailed study of a single crystal of dysprosium metal, which is a classical example of a system where magnetic and crystallographic sublattices can be either coupled or decoupled from one another. Magnetocaloric effect, magnetization, ac magnetic susceptibility, and heat capacity of high purity single crystals of dysprosium have been investigated over broad temperature and magnetic field intervals with the magnetic field vector parallel to either the a- or c-axes of the crystal. Notable differences in the behavior of the physical properties when compared to Dy samples studied in the past have been observed between 110 K and 125 K, and between 178 K and {approx}210 K. A plausible mechanism based on the formation of antiferromagnetic clusters in the impure Dy has been suggested in order to explain the reduction of the magnetocaloric effect in the vicinity of the Neel point. Experimental and theoretical investigations of the influence of commensurability effects on the magnetic phase diagram and the value of the magnetocaloric effect have been conducted. The presence of newly found …
Date: August 9, 2006
Creator: Chernyshov, Alexander S.
System: The UNT Digital Library
Designing of Metallic Photonic Structures and Applications (open access)

Designing of Metallic Photonic Structures and Applications

In this thesis our main interest has been to investigate metallic photonic crystal and its applications. We explained how to solve a periodic photonic structure with transfer matrix method and when and how to use modal expansion method. Two different coating methods were introduced, modifying a photonic structure's intrinsic optical properties and rigorous calculation results are presented. Two applications of metallic photonic structures are introduced. For thermal emitter, we showed how to design and find optimal structure. For conversion efficiency increasing filter, we calculated its efficiency and the way to design it. We presented the relation between emitting light spectrum and absorption and showed the material and structural dependency of the absorption spectrum. By choosing a proper base material and structural parameters, we can design a selective emitter at a certain region we are interested in. We have developed a theoretical model to analyze a blackbody filament enclosed by a metallic mesh which can increase the efficiency of converting a blackbody radiation to visible light. With this model we found that a square lattice metallic mesh enclosing a filament might increase the efficiency of incandescent lighting sources. Filling fraction and thickness dependency were examined and presented. Combining these two parameters …
Date: August 9, 2006
Creator: Kim, Yong-Sung
System: The UNT Digital Library
Dynamic behavior of semivolatile organic compounds in indoor air (open access)

Dynamic behavior of semivolatile organic compounds in indoor air

None
Date: December 9, 1998
Creator: Van Loy, M.D.
System: The UNT Digital Library
Effect of a fluorinated nickel surface on the decomposition of perfluorodiethoxymethane (open access)

Effect of a fluorinated nickel surface on the decomposition of perfluorodiethoxymethane

Perfluoropolyethers (PFPEs) are a commercial class of lubricants widely used in computer and aerospace industries. This is a study of the degradation of a perfluorinated ether in the presence of a metal fluoride. Perfluorodiethoxymethane (PFDEM) is a PFPE analog. Temperature programmed desorption shows no contribution of PFDEM toward nickel fluoride on an NiF{sub 2} surface obtained by CF{sub 3}I adsorption. Higher coverages of nickel fluoride do not show any evidence of NiF{sub 2} contribution from PFDEM. The results do not agree with the idea that a fluorinated surface might induce decomposition of PFPEs, leading to addition fluoride formation on the surface. The metal fluoride bond strength is not a legitimate concern for decomposition of PFE lubricants. Impurity in PFPEs might be the cause of initial surface fluoridation leading to breakdown of PFPEs which could cause additional metal fluoride formation. It is clear that the reaction of PFPEs with metals does not involve a direct formation of a simple M-F bond; results do not show any C-F bond cleavage of the fluorinated ether and do not support a proposed autocatalytic mechanism.
Date: November 9, 1995
Creator: Sreevidya, S.
System: The UNT Digital Library
The effect of spacer ribs on Ledinegg type flow instabilities (open access)

The effect of spacer ribs on Ledinegg type flow instabilities

An experimental program has been completed which evaluated the effect of a flow obstruction in a heated channel on the onset of flow instability (OBI). The test channel was rectangular (80 {times} 3 mm), heated on one surface, and equipped with view ports. Tests were conducted in a flow controlled mode at heat fluxes of 370 kW/M{sup 2}, and 610 kW/m{sup 2}. Direct comparisons were made between the demand curve minimum for the unobstructed channel and a channel equipped with a 2.07 mm wide rib that was parallel to the flow and in contact with the heated surface. Data at OFI is presented in the nondimensional terms Of Q{sub ratio} (ratio of heat flux applied to heat flux required to achieve saturated liquid conditions at the exit), and the local Stanton number at the channel exit for each channel arrangement. The Q{sub ratio} and Stanton number values for the unobstructed channel and the rib equipped channel are then compared to produce an estimate of the rib effect.
Date: September 9, 1993
Creator: Coutts, D. A.
System: The UNT Digital Library
Experimental Study of the Spin Structure of the Neutron (3He) at low Q2: a connection between the Bjorken and Gerasimov-Drell-Hearn Sum Rules (open access)

Experimental Study of the Spin Structure of the Neutron (3He) at low Q2: a connection between the Bjorken and Gerasimov-Drell-Hearn Sum Rules

The authors have presented the motivations in gathering doubly polarized data in the quasi-elastic, resonance and DIS domains. These data were used to calculate the extended GDH integral. The comparison of this quantity with the spin dependent forward Compton amplitude {bar S}{sub 1} is of particular importance for the unification of the two strong interaction descriptions (nucleonic/hadronic vs. partonic) because {bar S}{sub 1} is the first quantity theoretically calculable in the full Q{sup 2} domain of the strong interaction. Such a data taking was made possible because of three major technical achievements: (1) the beam of high duty cycle (100%), high current (up to 70 {micro}A) and high polarization (70%); (2) the {sup 3}He target of high density (above 10 atm) with a polarization of 35% and a length of 40 cm; and (3) the large acceptance (6 msr) and high resolution ({Delta}P/P {approx_equal} 10{sup {minus}4}) spectrometers. These features, available at Jefferson Lab, enabled them to achieve the highest luminosity in the world (about 10{sup 36} s{sup {minus}1} cm{sup {minus}2} with a current of 15 {micro}A) as far as polarized {sup 3}He targets are concerned. Consequently they were able to gather, in a rather short period of time (3 months), …
Date: October 9, 2000
Creator: Deur, Alexander
System: The UNT Digital Library
High Resolution Studies of the Origins of Polyatomic Ions in Inductively Coupled Plasma-Mass Spectrometry (open access)

High Resolution Studies of the Origins of Polyatomic Ions in Inductively Coupled Plasma-Mass Spectrometry

The inductively coupled plasma (ICP) is an atmospheric pressure ionization source. Traditionally, the plasma is sampled via a sampler cone. A supersonic jet develops behind the sampler, and this region is pumped down to a pressure of approximately one Torr. A skimmer cone is located inside this zone of silence to transmit ions into the mass spectrometer. The position of the sampler and skimmer cones relative to the initial radiation and normal analytical zones of the plasma is key to optimizing the useful analytical signal [1]. The ICP both atomizes and ionizes the sample. Polyatomic ions form through ion-molecule interactions either in the ICP or during ion extraction [l]. Common polyatomic ions that inhibit analysis include metal oxides (MO{sup +}), adducts with argon, the gas most commonly used to make up the plasma, and hydride species. While high resolution devices can separate many analytes from common interferences, this is done at great cost in ion transmission efficiency--a loss of 99% when using high versus low resolution on the same instrument [2]. Simple quadrupole devices, which make up the bulk of ICP-MS instruments in existence, do not present this option. Therefore, if the source of polyatomic interferences can be determined and …
Date: August 9, 2006
Creator: Ferguson, Jill Wisnewski
System: The UNT Digital Library
Homometallic and Heterometallic Antiferromagnetic Rings: Magnetic Properties Studied by Nuclear Magnetic Resonance (open access)

Homometallic and Heterometallic Antiferromagnetic Rings: Magnetic Properties Studied by Nuclear Magnetic Resonance

The aim of the present thesis is to investigate the local magnetic properties of homometallic Cr{sub 8} antiferromagnetic (AFM) ring and the changes occurring by replacing one Cr{sup 3+} ion with diamagnetic Cd{sup 2+} (Cr{sub 7}Cd) and with Ni{sup 2+} (Cr{sub 7}Ni). In the heterometallic ring a redistribution of the local magnetic moment is expected in the low temperature ground state. We have investigated those changes by both {sup 53}Cr-NMR and {sup 19}F-NMR. We have determined the order of magnitude of the transferred hyperfine coupling constant {sup 19}F - M{sup +} where M{sup +} = Cr{sup 3+}, Ni{sup 2+} in the different rings. This latter result gives useful information about the overlapping of the electronic wavefunctions involved in the coordinative bond.
Date: May 9, 2012
Creator: Casadei, Cecilia
System: The UNT Digital Library
Impacts of Parental Health on the Psychosocial Functioning of University Students (open access)

Impacts of Parental Health on the Psychosocial Functioning of University Students

Undergraduate thesis exploring the effects of growing up with parental chronic illness on emerging adults. The current study utilizes self-reported questionnaire data on the psychosocial functioning of 635 students from UNT to increase understanding of how parental chronic illness affects university students' life satisfaction, psychological distress, and compulsive self-reliance. In an attempt to identify potential protective factors, the moderating effects of attachment and resiliency on the link between parental chronic illness and the psychosocial wellness variables were examined.
Date: July 9, 2014
Creator: Askings, Diana Christine
System: The UNT Digital Library
Indium Growth and Island Height Control on Si Submonolayer Phases (open access)

Indium Growth and Island Height Control on Si Submonolayer Phases

Nanotechnology refers any technique that involves about object with nanoscale (10{sup -9} m) or even smaller. It has become more and more important in recently years and has changed our world dramatically. Most of modern electronic devices today should thanks to the miniaturizing driven by development of nanotechnology. Recent years, more and more governments are investing huge amount of money in research related to nanotechnology. There are two major reasons that nanostructure is so fascinate. The first one is the miniaturizing. It is obvious that if we can make products smaller without losing the features, we can save the cost and increase the performance dramatically. For an example, the first computer in the world, ENIAC, which occupied several rooms, is less powerful than the cheapest calculator today. Today's chips with sizes of less than half an inch contain millions of basic units. All these should thank to the development of nanotechnology. The other reason is that when we come to nanoscale, there are many new effects due to the quantum effect which can't be found in large systems. For an example, quantum dots (QDs) are systems which sizes are below 1{micro}m(10{sup -6}m) and restricted in three dimensions. There are many …
Date: May 9, 2009
Creator: Chen, Jizhou
System: The UNT Digital Library
Investigation of the phase equilibria and phase transformations associated with the Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y} superconductor (open access)

Investigation of the phase equilibria and phase transformations associated with the Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y} superconductor

The solid solution region and reaction kinetics of the Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y} (2212) superconductor were examined as a function of temperature and oxygen partial pressure. Crystallization studies from the glassy and molten states were undertaken to determine the phase transformation and kinetics associated with the formation of 2212 and other competing phases. Crystallization of nominal 2212 glasses was found to proceed in two steps with the formation of Bi{sub 2}Sr{sub 2{minus}x}Ca{sub x}CuO{sub y} (2201) and Cu{sub 2}O followed by Bi{sub 2}Sr{sub 3{minus}x}Ca{sub x}O{sub y}, CaO, and SrO. The 2212 phase converts from the 2201 phase with increasing temperatures. However, its formation below 800 C was kinetically limited. At 800 C and above, a nearly full conversion to the 2212 phase was achieved after only one minute although considerably longer anneal times were necessary for the system to reach equilibrium. In low oxygen partial pressures, the solidus is reduced to approximately 750 C. Solidification studies revealed an eutectic structure separating the incongruently melting 2212/2201 phases at high oxygen partial pressures from the congruently melting Bi{sub 2}Sr{sub 3{minus}x}Ca{sub x}O{sub y} (23x) and Bi{sub 2}Sr{sub 2{minus}x}Ca{sub x}O{sub y} (22x) phases present at low oxygen partial pressures. During solidification in various oxygen …
Date: December 9, 1993
Creator: Holesinger, T.
System: The UNT Digital Library
Multipole Analysis of Circular Cylindircal Magnetic Systems (open access)

Multipole Analysis of Circular Cylindircal Magnetic Systems

This thesis deals with an alternate method for computing the external magnetic field from a circular cylindrical magnetic source. The primary objective is to characterize the magnetic source in terms of its equivalent multipole distribution. This multipole distribution must be valid at points close to the cylindrical source and a spherical multipole expansion is ill-equipped to handle this problem; therefore a new method must be introduced. This method, based upon the free-space Green's function in cylindrical coordinates, is developed as an alternative to the more familiar spherical harmonic expansion. A family of special functions, called the toroidal functions or Q-functions, are found to exhibit the necessary properties for analyzing circular cylindrical geometries. In particular, the toroidal function of zeroth order, which comes from the integral formulation of the free-space Green's function in cylindrical coordinates, is employed to handle magnetic sources which exhibit circular cylindrical symmetry. The toroidal functions, also called Q-functions, are the weighting coefficients in a ''Fourier series-like'' expansion which represents the free-space Green's function. It is also called a toroidal expansion. This expansion can be directly employed in electrostatic, magnetostatic, and electrodynamic problems which exhibit cylindrical symmetry. Also, it is shown that they can be used as an …
Date: January 9, 2006
Creator: Selvaggi, J
System: The UNT Digital Library
New perspectives in physics beyond the standard model (open access)

New perspectives in physics beyond the standard model

In 1934 Fermi postulated a theory for weak interactions containing a dimensionful coupling with a size of roughly 250 GeV. Only now are we finally exploring this energy regime. What arises is an open question: supersymmetry and large extra dimensions are two possible scenarios. Meanwhile, other experiments will begin providing definitive information into the nature of neutrino masses and CP violation. In this paper, we explore features of possible theoretical scenarios, and study the phenomenological implications of various models addressing the open questions surrounding these issues.
Date: September 9, 2000
Creator: Weiner, Neal Jonathan
System: The UNT Digital Library
The Node Monitoring Component of a Scalable Systems Software Environment (open access)

The Node Monitoring Component of a Scalable Systems Software Environment

This research describes Fountain, a suite of programs used to monitor the resources of a cluster. A cluster is a collection of individual computers that are connected via a high speed communication network. They are traditionally used by users who desire more resources, such as processing power and memory, than any single computer can provide. A common drawback to effectively utilizing such a large-scale system is the management infrastructure, which often does not often scale well as the system grows. Large-scale parallel systems provide new research challenges in the area of systems software, the programs or tools that manage the system from boot-up to running a parallel job. The approach presented in this thesis utilizes a collection of separate components that communicate with each other to achieve a common goal. While systems software comprises a broad array of components, this thesis focuses on the design choices for a node monitoring component. We will describe Fountain, an implementation of the Scalable Systems Software (SSS) node monitor specification. It is targeted at aggregate node monitoring for clusters, focusing on both scalability and fault tolerance as its design goals. It leverages widely used technologies such as XML and HTTP to present an interface …
Date: August 9, 2006
Creator: Miller, Samuel James
System: The UNT Digital Library
Nuclear reactions with 11C and 14O radioactive ion beams (open access)

Nuclear reactions with 11C and 14O radioactive ion beams

Radioactive ion beams (RIBs) have been shown to be a useful tool for studying proton-rich nuclides near and beyond the proton dripline and for evaluating nuclear models. To take full advantage of RIBs, Elastic Resonance Scattering in Inverse Kinematics with Thick Targets (ERSIKTT), has proven to be a reliable experimental tool for investigations of proton unbound nuclei. Following several years of effort, Berkeley Experiments with Accelerated Radioactive Species (BEARS), a RIBs capability, has been developed at the Lawrence Berkeley National Laboratory's 88-Inch Cyclotron. The current BEARS provides two RIBs: a 11C beam of up to 2x108 pps intensity on target and an 14O beam of up to 3x104 pps intensity. While the development of the 11C beam has been relatively easy, a number of challenges had to be overcome to obtain the 14O beam. The excellent 11C beam has been used to investigate several reactions. The first was the 197Au(11C,xn)208-xnAt reaction, which was used to measure excitation functions for the 4n to 8n exit channels. The measured cross sections were generally predicted quite well using the fusion-evaporation code HIVAP. Possible errors in the branching ratios of ?? decays from At isotopes as well as the presence of incomplete fusion reactions …
Date: December 9, 2004
Creator: Guo, Fanqing
System: The UNT Digital Library
Physical Studies of Cell Division: Statistical Fluctuations; Effects Due to X-Radiation, Temperature, and Hydrostatic Pressure (open access)

Physical Studies of Cell Division: Statistical Fluctuations; Effects Due to X-Radiation, Temperature, and Hydrostatic Pressure

Thesis discussing "a technique for determining the generation times of individual yeast cells...the effect of x-radiation on the generation times of individual cells and their progeny..." and "attempts to synchronize cell division in a population of cells."
Date: December 9, 1954
Creator: Burns, Victor Will
System: The UNT Digital Library
Plasma channel and Z-pinch dynamics for heavy ion transport (open access)

Plasma channel and Z-pinch dynamics for heavy ion transport

A self stabilized, free standing, z-pinch plasma channel has been proposed to deliver the high intensity heavy ion beam from the end of a driver to the fuel target in a heavy ion inertial fusion power plant. The z-pinch relaxes emittance and energy spread requirements requiring a lower cost driver. A z-pinch transport would reduce the number of beam entry port holes to the target chamber from over a hundred to four as compared to neutralized ballistic focusing thus reducing the driver hardware exposure to neutron flux. Experiments where a double pulse discharge technique is used, z-pinch plasma channels with enhanced stability are achieved. Typical parameters are 7 kV pre-pulse discharge and 30 kV main bank discharge with 50 kA of channel current in a 7 torr background gas atmosphere. This work is an experimental study of these plasma channels examining the relevant physics necessary to understand and model such plasmas. Laser diagnostics measured the dynamical properties of neutrals and plasma. Schlieren and phase contrast techniques probe the pre-pulse gas dynamics and infrared interferometry and faraday effect polarimetry are used on the z-pinch to study its electron density and current distribution. Stability and repeatability of the z-pinch depend on the …
Date: July 9, 2002
Creator: Ponce-Marquez, David
System: The UNT Digital Library
Plasma enhanced chemical vapor deposition of ZrO{sub 2} thin films (open access)

Plasma enhanced chemical vapor deposition of ZrO{sub 2} thin films

Amorphous ZrO{sub 2} thin films were deposited in an inductively coupled PECVD system using a Zr {beta}-diketonate, Zr(C{sub 11}H{sub 19}O{sub 2}){sub 4}, as the precursor. The deposits were air annealed at 900C for 5 min to get pure, single phase, oriented, polycrystalline {alpha}-ZrO{sub 2}. Feasibility of using 2 different types of reactors was investigated. The inductively heated horizontal reactor depositions at 600C had a lower deposition rate and the films were non-uniform in thickness with a columnar structure. The resistively heated vertical reactor depositions at 350C had a higher deposition rate and the films were more uniform in thickness with a fine grained microstructure. The statistical design was demonstrated as an effective technique to analyze the effect of process conditions on the rate of deposition and relative (h00) orientation. The factorial design was used to quantify the two responses in terms of the process variables and their mutual interactions. The statistical design for rate of deposition was found to correlate with the trends observed in classical design.
Date: December 9, 1993
Creator: Saravanan, Kolandaivelu
System: The UNT Digital Library