Resource Type

747 Matching Results

Results open in a new window/tab.

Prodrugs of Thyrotropin-Releasing Hormone and Related Peptides as Central Nervous System Agents (open access)

Prodrugs of Thyrotropin-Releasing Hormone and Related Peptides as Central Nervous System Agents

This article is a review of prodrug design for brain delivery of small- and medium-sized neuropeptides, focusing on thyrotropin-releasing hormone and structurally related peptides as examples.
Date: February 6, 2009
Creator: Prokai-Tatrai, Katalin & Prókai, László, 1958-
System: The UNT Digital Library
Quantifying the Contribution of Lubrication Oil to Particulate Emissions from a Diesel Engine (open access)

Quantifying the Contribution of Lubrication Oil to Particulate Emissions from a Diesel Engine

The contribution of lubrication oil to particulate matter (PM) emissions from a Cummins B5.9 Diesel engine was measured using accelerator mass spectrometry to trace carbon isotope concentrations. The engine operated at fixed medium load (285 N-m (210 ft.lbs.) 1600 m) used 100% biodiesel fuel (B100) with a contemporary carbon-14 ({sup 14}C) concentration of 103 amol {sup 14}C/ mg C. The C concentration of the exhaust C02 and PM were 102 and 99 amol {sup 14}C/mg C, respectively. The decrease in I4C content in the PM is due to the consumption of lubrication oil which is {sup 14}C-free. Approximately 4% of the carbon in PM came from lubrication oil under these operating conditions. The slight depression in CO{sub 2} isotope content could be attributed to ambient CO{sub 2} levels and measurement uncertainty.
Date: December 6, 2002
Creator: Cheng, A. S.; Rich, D.; Dibble, R. W. & Buchholz, B. A.
System: The UNT Digital Library
Theoretical study of the electronic states of Nb4, Nb5 clusters and their anions (Nb4?, Nb5?) (open access)

Theoretical study of the electronic states of Nb4, Nb5 clusters and their anions (Nb4?, Nb5?)

Geometries and energy separations of the various low-lying electronic states of Nb{sub n} and Nb{sub n}{sup -} (n = 4, 5) clusters with various structural arrangements have been investigated. The complete active space multi-configuration self-consistent field (CASMCSCF) method followed by multi-reference singles and doubles configuration interaction (MRSDCI) calculations that included up to 52 million configuration spin functions have been used to compute several electronic states of these clusters. The ground states of both Nb{sub 4} ({sup 1}A', pyramidal) and Nb{sub 4}{sup -} ({sup 2}B{sub 3g}, rhombus) are low-spin states at the MRSDCI level. The ground state of Nb{sub 5} cluster is a doublet with a distorted trigonal bipyramid (DTB) structure. The anionic cluster of Nb{sub 5} has two competitive ground states with singlet and triplet multiplicities (DTB). The low-lying electronic states of these clusters have been found to be distorted due to Jahn-Teller effect. On the basis of the energy separations of our computed electronic states of Nb{sub 4} and Nb{sub 5}, we have assigned the observed photoelectron spectrum of Nb{sub n}{sup -}(n = 4, 5) clusters. We have also compared our MRSDCI results with density functional calculations. The electron affinity, ionization potential, dissociation and atomization energies of Nb{sub 4} …
Date: May 6, 2004
Creator: Balasubramanian, K & Majumdar, D
System: The UNT Digital Library
Effect of Ethanol and Methyl-tert-Butyl Ether on Monoaromatic Hydrocarbon Biodegradation: Response Variability for Different Aquifer Materials Under Various Electron-Accepting Conditions (open access)

Effect of Ethanol and Methyl-tert-Butyl Ether on Monoaromatic Hydrocarbon Biodegradation: Response Variability for Different Aquifer Materials Under Various Electron-Accepting Conditions

Aquifer microcosms were used to determine how ethanol and methyl-tert-butyl ether (MtBE) affect monoaromatic hydrocarbon degradation under different electron-accepting conditions commonly found in contaminated sites experiencing natural attenuation. Response variability was investigated by using aquifer material from four sites with different exposure history. The lag phase prior to BTEX (benzene, toluene, ethylbenzene, and xylenes) and ethanol degradation was typically shorter in microcosms with previously contaminated aquifer material, although previous exposure did not always result in high degradation activity. Toluene was degraded in all aquifer materials and generally under a broader range of electron-accepting conditions compared to benzene, which was degraded only under aerobic conditions. MtBE was not degraded within 100 days under any condition, and it did not affect BTEX or ethanol degradation patterns. Ethanol was often degraded before BTEX compounds, and had a variable effect on BTEX degradation as a function of electron-accepting conditions and aquifer material source. An occasional enhancement of toluene degradation by ethanol occurred in denitrifying microcosms with unlimited nitrate; this may be attributable to the fortuitous growth of toluene-degrading bacteria during ethanol degradation. Nevertheless, experiments with flow-through aquifer columns showed that this beneficial effect could be eclipsed by an ethanol-driven depletion of electron acceptors, which …
Date: October 6, 2003
Creator: Ruiz-Aguilar, G L; Fernandez-Sanchez, J M; Kane, S R; Kim, D & Alvarez, P J
System: The UNT Digital Library
A Source-to-Source Architecture for User-Defined Optimizations (open access)

A Source-to-Source Architecture for User-Defined Optimizations

The performance of object-oriented applications often suffers from the inefficient use of high-level abstractions provided by underlying libraries. Since these library abstractions are user-defined and not part of the programming language itself only limited information on their high-level semantics can be leveraged through program analysis by the compiler and thus most often no appropriate high-level optimizations are performed. In this paper we outline an approach based on source-to-source transformation to allow users to define optimizations which are not performed by the compiler they use. These techniques are intended to be as easy and intuitive as possible for potential users; i.e. for designers of object-oriented libraries, people most often only with basic compiler expertise.
Date: February 6, 2003
Creator: Schordan, M & Quinlan, D
System: The UNT Digital Library
Investigating Sources of Toxicity in Stormwater: Algae Mortality in Runoff Upstream of the Lawrence Livermore National Laboratory (open access)

Investigating Sources of Toxicity in Stormwater: Algae Mortality in Runoff Upstream of the Lawrence Livermore National Laboratory

A source evaluation case study is presented for observations of algae toxicity in an intermittent stream passing through the Lawrence Livermore National Laboratory near Livermore, California. A five-step procedure is discussed to determine the cause of water toxicity problems and to determine appropriate environmental management practices. Using this approach, an upstream electrical transfer station was identified as the probable source of herbicides causing the toxicity. In addition, an analytical solution for solute transport in overland flow was used to estimate the application level of 40 Kg/ha. Finally, this source investigation demonstrates that pesticides can impact stream water quality regardless of application within levels suggested on manufacturer labels. Environmental managers need to ensure that pesticides that could harm aquatic organisms (including algae) not be used within close proximity to streams or storm drainages and that application timing should be considered for environmental protection.
Date: October 6, 2003
Creator: Campbell, C G; Folks, K; Mathews, S & Martinelli, R
System: The UNT Digital Library
20% Partial Siberian Snake in the AGS. (open access)

20% Partial Siberian Snake in the AGS.

An 11.4% partial Siberian snake was used to successfully accelerate polarized proton through a strong intrinsic depolarizing spin resonance in the AGS. No noticeable depolarization was observed. This opens up the possibility of using a 20% to 30% partial Siberian snake in the AGS to overcome all weak and strong depolarizing spin resonances. Some design and operation issues of the new partial Siberian snake are discussed.
Date: November 6, 2002
Creator: Huang, H.; Bai, M.; Brown, K. A.; Glenn, W.; Luccio, A. U.; MacKay, W. W. et al.
System: The UNT Digital Library
Shock Compression of Hydrogen and Other Small Molecules (open access)

Shock Compression of Hydrogen and Other Small Molecules

None
Date: July 6, 2001
Creator: Nellis, W J
System: The UNT Digital Library
Metastable metallic hydrogen glass (open access)

Metastable metallic hydrogen glass

The quest for metallic hydrogen has been going on for over one hundred years. Before hydrogen was first condensed into a liquid in 1898, it was commonly thought that condensed hydrogen would be a metal, like the monatomic alkali metals below hydrogen in the first column of the Periodic Table. Instead, condensed hydrogen turned out to be transparent, like the diatomic insulating halogens in the seventh column of the Periodic Table. Wigner and Huntington predicted in 1935 that solid hydrogen at 0 K would undergo a first-order phase transition from a diatomic to a monatomic crystallographically ordered solid at {approx}25 GPa. This first-order transition would be accompanied by an insulator-metal transition. Though searched for extensively, a first-order transition from an ordered diatomic insulator to a monatomic metal is yet to be observed at pressures up to 120 and 340 GPa using x-ray diffraction and visual inspection, respectively. On the other hand, hydrogen reaches the minimum electrical conductivity of a metal at 140 GPa, 0.6 g/cm{sup 3}, and 3000 K. These conditions were achieved using a shock wave reverberating between two stiff sapphire anvils. The shock wave was generated with a two-stage light-gas gun. This temperature exceeds the calculated melting temperature …
Date: February 6, 2001
Creator: Nellis, W J
System: The UNT Digital Library
Test of CAP88-PC's Predicted Concentrations of Tritium in Air at Lawrence Livermore National Laboratory (open access)

Test of CAP88-PC's Predicted Concentrations of Tritium in Air at Lawrence Livermore National Laboratory

Based on annual tritium release rates from the five sources of tritium at Lawrence Livermore National Laboratory and the Tritium Research Laboratory at Sandia National Laboratory, the regulatory dispersion and dose model, CAP88-PC, was used to predict tritium concentrations in air at perimeter and offsite air surveillance monitoring locations for 1986 through 2001. These predictions were compared with mean annual measured concentrations, based on biweekly sampling. Deterministic predictions were compared with deterministic observations using predicted-to-observed ratios. In addition, the uncertainty on observations and predictions was assessed: when the uncertainty bounds of the observations overlapped with the uncertainty bounds of the predictions, the predictions were assumed to agree with the observations with high probability. Deterministically, 54% of all predictions were higher than the observations, and 96% fell within a factor of three. Accounting for uncertainty, 75% of all predictions agreed with the observations; 87% of the predictions either matched or exceeded the observations. Predictions equaled or exceeded observations at those sampling locations towards which the wind blows most frequently, except those in the hills. Under-predictions were seen at locations towards which the wind blows infrequently when released tritium was from elevated sources. When a high fraction of tritium was from area …
Date: November 6, 2003
Creator: Peterson, S, R,
System: The UNT Digital Library
Measurement of the polarization of the K-shell resonance line emission of S13+ and S14+ at relativistic electron beam energies. (open access)

Measurement of the polarization of the K-shell resonance line emission of S13+ and S14+ at relativistic electron beam energies.

We have measured the polarization of the heliumlike sulfur resonance line 1s2p {sup 1}P{sub 1} {yields} 1s{sup 2} {sup 1}S{sub 0}, and of the blend of the lithiumlike sulfur resonance lines 1s2s2p {sup 2}P{sub 3/2} {yields} 1s{sup 2}2s {sup 2}S{sub 1/2} and 1s2s2p {sup 2}P{sub 1/2} {yields} 1s{sup 2}2s {sup 2}S{sub 1/2} as a function of electron beam energy from near threshold to 144 keV. These lines were excited with the LLNL high-energy electron beam ion trap and measured using a newly modified two-crystal technique. Our results test polarization predictions in an energy regime where few empirical results have been reported. We also present calculations of the polarization using two different methods, and good agreement is obtained.
Date: April 6, 2004
Creator: Robbins, D; Faenov, A Y; Pikuz, T; Chen, H; Beiersdorfer, P; May, M et al.
System: The UNT Digital Library
The National Ignition Facility (open access)

The National Ignition Facility

The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is a stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter-diameter target chamber and room for 100 diagnostics. NIF is the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion and matter at extreme energy densities and pressures. NIF's energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will study physical processes at temperatures approaching 10{sup 8} K and 10{sup 11} bar; conditions that exist naturally only in the interior of stars and planets. NIF has completed the first phases of its laser commissioning program. The first four beams of NIF have generated 106 kilojoules in 23-ns pulses of infrared light and over 16 kJ in 3.5-ns pulses at the third harmonic (351 nm). NIF's target experimental systems are being commissioned and experiments have begun. This paper provides a detailed look the NIF laser systems, laser and optical performance, and results from recent laser commissioning shots. We follow this with a discussion of NIF's high-energy-density and inertial fusion experimental capabilities, …
Date: February 6, 2004
Creator: Miller, G H; Moses, E I & Wuest, C R
System: The UNT Digital Library
Low-Temperature Growth of DKDP for Improving Laser-Induced Damage resistance at 350nm (open access)

Low-Temperature Growth of DKDP for Improving Laser-Induced Damage resistance at 350nm

A set of twenty-three 20-L crystallizer runs exploring the importance of several engineering variables found that growth temperature is the most important variable controlling damage resistance of DKDP over the conditions investigated. Boules grown between 45 C and room temperature have a 50% probability of 3{omega} bulk damage that is 1.5 to 2 times higher than boules grown between 65 and 45 C. This raises their damage resistance above the NIF tripler specification for 8 J/cm{sup 2} operation by a comfortable margin. Solution impurity levels do not correlate with damage resistance for iron less than 200 ppb and aluminum less than 2000 ppb. The possibility that low growth temperatures could increase damage resistance in NIF-scale boules was tested by growing a large boule in a 1000-L crystallizer with a supplemental growth solution tank. Four samples representing early and late pyramid and prism growth are very close to the specification as best it is understood at the present. Implications of low temperature growth for meeting absorbance, homogeneity, and other material specifications are discussed.
Date: December 6, 2000
Creator: Burnham, A K; Runkel, M; Hawley-Fedder, R A; Carman, M L; Torres, R A & Whitman, P K
System: The UNT Digital Library
A First Look at Beam Diagnostics for the Rhic Electron Cooling Project. (open access)

A First Look at Beam Diagnostics for the Rhic Electron Cooling Project.

High energy electron cooling [1] is essential to meet the luminosity specification for RHIC II [2]. In preparation for electron cooling, an Energy Recovery Linac (ERL) test facility [3] is under construction at BNL. A preliminary description of Diagnostics for the ERL was presented at an earlier workshop [4]. A significant portion of the eCooling Diagnostics will be a simple extension of those developed for the ERL test facility. In this paper we present a preliminary report on eCooling Diagnostics. We summarize the planned conventional Diagnostics, and follow with more detailed descriptions of Diagnostics specialized to the requirements of high-energy magnetized cooling.
Date: June 6, 2005
Creator: Cameron, P.; Ben-Zvi, Ilan; Kewisch, J. & Litvinenko, V.
System: The UNT Digital Library
Ion storage ring measurements of dielectronic recombination for astrophysically relevant Feq+ ions (open access)

Ion storage ring measurements of dielectronic recombination for astrophysically relevant Feq+ ions

Iron ions provide many valuable plasma diagnostics for cosmic plasmas. The accuracy of these diagnostics, however, often depends on an accurate understanding of the ionization structure of the emitting gas. Dielectronic recombination (DR) is the dominant electron-ion recombination mechanism for most iron ions in cosmic plasmas. Using the heavy-ion storage ring at the Max-Planck-Institute for Nuclear Physics in Heidelberg, Germany, we have measured the low temperature DR rates for Fe{sup q+} where q = 15, 17, 18, and 19. These rates are important for photoionized gases which form in the media surrounding active galactic nuclei, X-ray binaries, and cataclysmic variables. Our results demonstrate that commonly used theoretical approximations for calculating low temperature DR rates can easily under- or over-estimate the DR rate by a factor of {approx} 2 or more. As essentially all DR rates used for modeling photoionized gases are calculated using these approximations, our results indicate that new DR rates are needed for almost all charge states of cosmically abundant elements. Measurements are underway for other charge states of iron.
Date: June 6, 2000
Creator: Savin, D. W.; Badnell, N. R.; Bartsch, T.; Brandau, C.; Chen, M. H.; Grieser, M. et al.
System: The UNT Digital Library
Full Wave Analysis of RF Signal Attenuation in a Lossy Cave using a High Order Time Domain Vector Finite Element Method (open access)

Full Wave Analysis of RF Signal Attenuation in a Lossy Cave using a High Order Time Domain Vector Finite Element Method

We present a computational study of signal propagation and attenuation of a 200 MHz dipole antenna in a cave environment. The cave is modeled as a straight and lossy random rough wall. To simulate a broad frequency band, the full wave Maxwell equations are solved directly in the time domain via a high order vector finite element discretization using the massively parallel CEM code EMSolve. The simulation is performed for a series of random meshes in order to generate statistical data for the propagation and attenuation properties of the cave environment. Results for the power spectral density and phase of the electric field vector components are presented and discussed.
Date: December 6, 2004
Creator: Pingenot, J; Rieben, R & White, D
System: The UNT Digital Library
The Effects and Possible Origins of Mains Ripple in the Vicinity of the Betatron Spectrum. (open access)

The Effects and Possible Origins of Mains Ripple in the Vicinity of the Betatron Spectrum.

With the advent of significant improvement in the sensitivity of observation of the betatron spectrum, the appearance of spectral lines at harmonics of the mains power frequency has been observed in the PS and SPS at CERN, the Tevatron at FNAL, and RHIC at BNL. These lines are potentially problematic for accurate tune tracking and the implementation of tune feedback We discuss the possible origins of these lines, and present data to support our discussion.
Date: June 6, 2005
Creator: Cameron, P.; Gasior, M.; Jones, R. & Tan, C.
System: The UNT Digital Library
Characterization of Thermal Sprayed Aluminum and Stainless Steel Coatings for Clean Laser Enclosures (open access)

Characterization of Thermal Sprayed Aluminum and Stainless Steel Coatings for Clean Laser Enclosures

Surfaces of steel structures that enclose high-fluence, large-beam lasers have conventional and unconventional requirements. Aside from rust prevention, the surfaces must resist laser-induced degradation and the contamination of the optical components. The latter requires a surface that can be precision cleaned to low levels of particulate and organic residue. In addition, the surface treatment for the walls should be economical to apply because of the large surface areas involved, and accommodating with intricate joint geometries. Thermal sprayed coatings of aluminum (Al) and stainless steel are candidate surface materials. Coatings are produced and characterized for porosity, smoothness, and hardness. These properties have a bearing on the cleanliness of the coating. The laser resistance of Al and 3 16L coatings are given. The paper summarizes the characterization of twin-wire-arc deposited Al, high-velocity-oxygen-fueled (HVOF) deposited Al, flame-sprayed 316L, and HVOF deposited316L. The most promising candidate coating is that of HVOF Al. This Al coating has the lowest porosity (8%) compared the other three coatings and relatively low hardness (100 VHN). The as-deposited roughness (Ra) is 433 pinches, but after a quick sanding by hand, the roughness decreased to 166 pinches. Other post-coat treatments are discussed. HVOF aluminum coatings are demonstrated. Al coatings are …
Date: April 6, 2000
Creator: Chow, R; Decker, T A; Gansert, R V & Gansert, D
System: The UNT Digital Library
The DNA sequence and biology of human chromosome 19 (open access)

The DNA sequence and biology of human chromosome 19

Chromosome 19 has the highest gene density of all human chromosomes, more than double the genome-wide average. The large clustered gene families, corresponding high GC content, CpG islands and density of repetitive DNA indicate a chromosome rich in biological and evolutionary significance. Here we describe 55.8 million base pairs of highly accurate finished sequence representing 99.9% of the euchromatin portion of the chromosome. Manual curation of gene loci reveals 1,461 protein-coding genes and 321 pseudogenes. Among these are genes directly implicated in Mendelian disorders, including familial hypercholesterolemia and insulin-resistant diabetes. Nearly one quarter of these genes belong to tandemly arranged families, encompassing more than 25% of the chromosome. Comparative analyses show a fascinating picture of conservation and divergence, revealing large blocks of gene orthology with rodents, scattered regions with more recent gene family expansions and deletions, and segments of coding and non-coding conservation with the distant fish species Takifugu.
Date: April 6, 2004
Creator: Grimwood, J.; Gordon, L. A.; Olsen, A.; Terry, A.; Schmutz, J.; Lamerdin, J. et al.
System: The UNT Digital Library
Dataflow and remapping for wavelet compression and realtime view-dependent optimization of billion-triangle isosurfaces (open access)

Dataflow and remapping for wavelet compression and realtime view-dependent optimization of billion-triangle isosurfaces

Currently, large physics simulations produce 3D fields whose individual surfaces, after conventional extraction processes, contain upwards of hundreds of millions of triangles. Detailed interactive viewing of these surfaces requires powerful compression to minimize storage, and fast view-dependent optimization of display triangulations to drive high-performance graphics hardware. In this work we provide an overview of an end-to-end multiresolution dataflow strategy whose goal is to increase efficiencies in practice by several orders of magnitude. Given recent advancements in subdivision-surface wavelet compression and view-dependent optimization, we present algorithms here that provide the ''glue'' that makes this strategy hold together. Shrink-wrapping converts highly detailed unstructured surfaces of arbitrary topology to the semi-structured form needed for wavelet compression. Remapping to triangle bintrees minimizes disturbing ''pops'' during real-time display-triangulation optimization and provides effective selective-transmission compression for out-of-core and remote access to these huge surfaces.
Date: October 6, 2000
Creator: Duchaineau, M A; Porumbescu, S D; Bertram, M; Hamann, B & Joy, K I
System: The UNT Digital Library
Nuclear Spin Statistics of extended aromatic C48N12 Azafullerene (open access)

Nuclear Spin Statistics of extended aromatic C48N12 Azafullerene

We have presented the nuclear spin statistics of the novel extended aromatic C{sub 48}N{sub 12} azafullerene. The nuclear spin multiplets and statistical weights of {sup 14}N spin-1 bosons are provided. In addition we have also provided the {sup 13}C nuclear spin species and spin statistical weights of {sup 13}C{sub 48}N{sub 12}. The spin statistical weights and spin species show that the presence of {sup 14}N nuclei in the aromatic fullerene can provide unique experimental opportunity to investigate the nuclear spin species.
Date: May 6, 2004
Creator: Balasubramanian, K
System: The UNT Digital Library
Relative Advantages of Direct and Indirect Drive for an Inertial Fusion Energy Power Plant Driven by a Diode-Pumped Solid-State Laser (open access)

Relative Advantages of Direct and Indirect Drive for an Inertial Fusion Energy Power Plant Driven by a Diode-Pumped Solid-State Laser

This paper reviews our current understanding of the relative advantages of direct drive (DD) and indirect drive (ID) for a 1 GWe inertial fusion energy (IFE) power plant driven by a diode-pumped solid-state laser (DPSSL). This comparison is motivated by a recent study (1) that shows that the projected cost of electricity (COE) for DD is actually about the same as that for ID even though the target gain for DD can be much larger. We can therefore no longer assume that DD is the ultimate targeting scenario for IFE, and must begin a more rigorous comparison of these two drive options. The comparison begun here shows that ID may actually end up being preferred, but the uncertainties are still rather large.
Date: March 6, 2001
Creator: Orth, C D
System: The UNT Digital Library
Inertial Fusion and High-Energy-Density Science in the United States (open access)

Inertial Fusion and High-Energy-Density Science in the United States

Inertial fusion and high-energy density science worldwide is poised to take a great leap forward. In the US, programs at the University of Rochester, Sandia National Laboratories, Los Alamos National Laboratory, Lawrence Livermore National Laboratory (LLNL), the Naval Research Laboratory, and many smaller laboratories have laid the groundwork for building a facility in which fusion ignition can be studied in the laboratory for the first time. The National Ignition Facility (NIF) is being built by the Department of Energy's National Nuclear Security Agency to provide an experimental test bed for the US Stockpile Stewardship Program (SSP) to ensure the dependability of the country's nuclear deterrent without underground nuclear testing. NIF and other large laser systems being planned such as the Laser MegaJoule (LMJ) in France will also make important contributions to basic science, the development of inertial fusion energy, and other scientific and technological endeavors. NIF will be able to produce extreme temperatures and pressures in matter. This will allow simulating astrophysical phenomena (on a tiny scale) and measuring the equation of state of material under conditions that exist in planetary cores.
Date: September 6, 2001
Creator: Tarter, C B
System: The UNT Digital Library
Carbon Nanotube-Based Permeable Membranes (open access)

Carbon Nanotube-Based Permeable Membranes

A membrane of multiwalled carbon nanotubes embedded in a silicon nitride matrix was fabricated for use in studying fluid mechanics on the nanometer scale. Characterization by fluorescent tracer diffusion and scanning electron microscopy suggests that the membrane is void-free near the silicon substrate on which it rests, implying that the hollow core of the nanotube is the only conduction path for molecular transport. Assuming Knudsen diffusion through this nanotube membrane, a maximum helium transport rate (for a pressure drop of 1 atm) of 0.25 cc/sec is predicted. Helium flow measurements of a nanoporous silicon nitride membrane, fabricated by sacrificial removal of carbon, give a flow rate greater than 1x10{sup -6} cc/sec. For viscous, laminar flow conditions, water is estimated to flow across the nanotube membrane (under a 1 atm pressure drop) at up to 2.8x10{sup -5} cc/sec (1.7 {micro}L/min).
Date: April 6, 2004
Creator: Holt, J K; Park, H G; Bakajin, O; Noy, A; Huser, T & Eaglesham, D
System: The UNT Digital Library