Oxidation resistant alloys, method for producing oxidation resistant alloys (open access)

Oxidation resistant alloys, method for producing oxidation resistant alloys

A method for producing oxidation-resistant austenitic alloys for use at temperatures below 800 C. comprising of: providing an alloy comprising, by weight %: 14-18% chromium, 15-18% nickel, 1-3% manganese, 1-2% molybdenum, 2-4% silicon, 0% aluminum and the balance being iron; heating the alloy to 800 C. for between 175-250 hours prior to use in order to form a continuous silicon oxide film and another oxide film. The method provides a means of producing stainless steels with superior oxidation resistance at temperatures above 700 C. at a low cost
Date: November 5, 2002
Creator: Dunning, John S. & Alman, David E.
System: The UNT Digital Library
Method and apparatus for aligning a solar concentrator using two lasers (open access)

Method and apparatus for aligning a solar concentrator using two lasers

A method and apparatus are provided for aligning the facets of a solar concentrator. A first laser directs a first laser beam onto a selected facet of the concentrator such that a target board positioned adjacent to the first laser at approximately one focal length behind the focal point of the concentrator is illuminated by the beam after reflection thereof off of the selected facet. A second laser, located adjacent to the vertex of the optical axis of the concentrator, is used to direct a second laser beam onto the target board at a target point thereon. By adjusting the selected facet to cause the first beam to illuminate the target point on the target board produced by the second beam, the selected facet can be brought into alignment with the target point. These steps are repeated for other selected facets of the concentrator, as necessary, to provide overall alignment of the concentrator.
Date: October 5, 2000
Creator: Diver, Richard Boyer Jr.
System: The UNT Digital Library
Method for Making a Uranium Chloride Salt Product (open access)

Method for Making a Uranium Chloride Salt Product

The subject apparatus provides a means to produce UCl3, in large quantities without incurring corrosion of the containment vessel or associated apparatus. Gaseous Cl is injected into a lower layer of Cd where CdCl2 is formed. Due to is lower density, the CdCl2 rises through the Cd layer into a layer of molten LiCl-KCL salt where a rotatable basket containing uranium ingots is suspended. The CdCl2 reacts with the uranium to form UCl, and Cd. Due to density differences, the Cd sinks down to the liquid Cd layer and is reused. The UCl3 combines with the molten salt. During production the temperature is maintained at about 600 degrees C. while after the uranium has been depleted the salt temperature is lowered, the molten salt is pressure siphoned from the vessel, and the salt product LiCl-KCl-30 mol% UCl3 is solidified.
Date: October 5, 2004
Creator: Miller, William F. & Tomczuk, Zygmunt
System: The UNT Digital Library
Fabrication of Photonic band gap Materials (open access)

Fabrication of Photonic band gap Materials

A method for forming a periodic dielectric structure exhibiting photonic band gap effects includes forming a slurry of a nano-crystalline ceramic dielectric or semiconductor material and monodisperse polymer microsphere, depositing a film of the slurry on a substrate, drying the film, and calcining the film to remove the polymer microsphere there from. The film may be cold-pressed after drying and prior to calcining. The ceramic dielectric or semiconductor material may be titania, and the polymer microsphere may be polystyrenemicrosphere.
Date: January 5, 2000
Creator: Constant, Kristen; Subramania, Ganapathi S.; Biswas, Rana & Ho, Kai-Ming
System: The UNT Digital Library