Micromilling of Metal Alloys with Focused Ion Beam-Fabricated Tools (open access)

Micromilling of Metal Alloys with Focused Ion Beam-Fabricated Tools

This work combines focused ion beam sputtering and ultra-precision machining as a first step in fabricating microstructure in metals and alloys. Specifically, {approx}25{micro}m diameter micro-end mills are made from cobalt M42 high-speed steel and C2 micrograin tungsten carbide tool blanks by ion beam sputtering. A 20 keV focused gallium beam defines tool cutting edges having radii of curvature < 0.1{micro}m. Micro-end mills having 2, 4 and 5 cutting edges successfully machine small trenches in 6061-T4 aluminum, brass, 4340 steel and polymethyl methacrylate. Machined trench widths are approximately equal to the tool diameters and surface roughnesses (rms) are {approx}150 nm or less. Microtools are robust and operate for more than 6 hours without fracture. Results from ultra-precision machining aluminum at feed rates as high as 50 mm/minute are included.
Date: November 5, 1999
Creator: ADAMS,DAVID P.; VASILE,M.J.; BENAVIDES,GILBERT L. & CAMPBELL,ANN N.
Object Type: Article
System: The UNT Digital Library
Observations of Non-Close-Packed Arrangements in Multilayers of Passivated Gold Clusters (open access)

Observations of Non-Close-Packed Arrangements in Multilayers of Passivated Gold Clusters

The stacking of second and third layers of supercrystals of self-assembled passivated gold nanoparticles has been investigated using transmission electron microscopy. We report for the first time nanoparticles occupying the twofold saddle site in the third layer.
Date: October 5, 1999
Creator: AINDOW, M.; Brown, P.; Kiely, C. J.; Wellner, A. & Wilcoxon, Jess P.
Object Type: Article
System: The UNT Digital Library
Behavior of W and WSi(x) Contact Metallization on n- and p- Type GaN (open access)

Behavior of W and WSi(x) Contact Metallization on n- and p- Type GaN

Sputter-deposited W-based contacts on p-GaN (N{sub A} {approximately} 10{sup 18} cm{sup {minus}3}) display non-ohmic behavior independent of annealing temperature when measured at 25 C. The transition to ohmic behavior occurs above {approximately} 250 C as more of the acceptors become ionized. The optimum annealing temperature is {approximately} 700 C under these conditions. These contacts are much more thermally stable than the conventional Ni/Au metallization, which shows a severely degraded morphology even at 700 C. W-based contacts may be ohmic as-deposited on very heavily doped n-GaN, and the specific contact resistance improves with annealing up to {approximately} 900 C.
Date: January 5, 1999
Creator: Abernathy, C. R.; Cao, X. A.; Cole, M. W.; Eizenberg, M.; Lothian, J. R.; Pearton, S. J. et al.
Object Type: Article
System: The UNT Digital Library
Inductively Coupled Plasma Etching of III-Nitrides in Cl(2)/Xe,Cl(2)/Ar and Cl(2)/He (open access)

Inductively Coupled Plasma Etching of III-Nitrides in Cl(2)/Xe,Cl(2)/Ar and Cl(2)/He

The role of additive noble gases He, Ar and Xe to C&based Inductively Coupled Plasmas for etching of GaN, AIN and InN were examined. The etch rates were a strong function of chlorine concentration, rf chuck power and ICP source power. The highest etch rates for InN were obtained with C12/Xe, while the highest rates for AIN and GaN were obtained with C12/He. Efficient breaking of the 111-nitrogen bond is crucial for attaining high etch rates. The InN etching was dominated by physical sputtering, in contrast to GaN and AIN. In the latter cases, the etch rates were limited by initial breaking of the III-nitrogen bond. Maximum selectivities of -80 for InN to GaN and InN to AIN were obtained.
Date: January 5, 1999
Creator: Abernathy, C.R.; Cho, H.; Donovan, S.M.; Hahn, Y.B.; Hays, D.C.; Jung, K.B. et al.
Object Type: Article
System: The UNT Digital Library
Biological Conversion of Synthesis Gas (open access)

Biological Conversion of Synthesis Gas

Syngas is known to contain approximately 1 percent H[sub 2]S, along with CO[sub 2], C0[sub 2], H[sub 2] and CH[sub 4]. Similarly, the syngas may become contaminated with oxygen, particularly during reactor start-up and during maintenance. Previous studies with the water-gas shift bacterium Rhodospirillum rubrum have shown that the bacterium is tolerant of small quantities of oxygen, but the effects of oxygen on CO-consumption are unknown. Similarly, R. rubrum is known to be tolerant of H[sub 2]S, with high concentrations of H[sub 2]S negatively affecting CO-uptake. Batch experiments were thus carried out to determine the effects of H[sub 2]S and O[sub 2] on CO-uptake by R. rubrum. The results of these experiments were quantified by using Monod equations modified by adding terms for CO, H[sub 2]S and O[sub 2] inhibition. The techniques used in determining kinetic expressions previously shown for other gas-phase substrate bacterial systems including R. rubrum were utilized.
Date: January 5, 1993
Creator: Ackerson, M. D.; Clausen, E. C. & Gaddy, J. L.
Object Type: Report
System: The UNT Digital Library
Biological Conversion of Synthesis Gas. Project Status Report, October 1, 1992--December 31, 1992 (open access)

Biological Conversion of Synthesis Gas. Project Status Report, October 1, 1992--December 31, 1992

Syngas is known to contain approximately 1 percent H{sub 2}S, along with CO{sub 2}, C0{sub 2}, H{sub 2} and CH{sub 4}. Similarly, the syngas may become contaminated with oxygen, particularly during reactor start-up and during maintenance. Previous studies with the water-gas shift bacterium Rhodospirillum rubrum have shown that the bacterium is tolerant of small quantities of oxygen, but the effects of oxygen on CO-consumption are unknown. Similarly, R. rubrum is known to be tolerant of H{sub 2}S, with high concentrations of H{sub 2}S negatively affecting CO-uptake. Batch experiments were thus carried out to determine the effects of H{sub 2}S and O{sub 2} on CO-uptake by R. rubrum. The results of these experiments were quantified by using Monod equations modified by adding terms for CO, H{sub 2}S and O{sub 2} inhibition. The techniques used in determining kinetic expressions previously shown for other gas-phase substrate bacterial systems including R. rubrum were utilized.
Date: January 5, 1993
Creator: Ackerson, M. D.; Clausen, E. C. & Gaddy, J. L.
Object Type: Report
System: The UNT Digital Library
Microstructural dependence of cavitation damage in polycrystalline materials. Final report, 1 November 1992--31 October 1994 (open access)

Microstructural dependence of cavitation damage in polycrystalline materials. Final report, 1 November 1992--31 October 1994

Microstructure of a sample of Inconel X-750 damaged by ISCC (intergranular stress corrosion cracking) was examined after fatigue precracking in a high-temperature environment of deaerated water. Orientation imaging microscopy was used to reveal the microstructure adjacent to the crack path. General high-angle boundaries were found to be most susceptible to cracking. An ordering of the susceptibilities to ISCC damage was proposed; all boundaries have been classified into one of 12 categories. A model is proposed to predict the crack path for ISCC based on ex situ record of damage probabilities. The cracking is modeled as a Markov chain on a regular hexagonal array of grain boundaries representing the connectivity of the network.
Date: February 5, 1996
Creator: Adams, B.L.
Object Type: Report
System: The UNT Digital Library
Ion Beam Sputter Fabrication of Micro-Grooving and Micro-Threading Tools (open access)

Ion Beam Sputter Fabrication of Micro-Grooving and Micro-Threading Tools

This paper presents techniques for fabricating microscopic, nonplanar features in a variety of materials. Micro-grooving and micro-threading tools having cutting dimensions of 10-30{micro}m are made by focused ion beam sputtering and used in ultra-precision machining. Tool fabrication involves directing a 20 keV gallium beam at polished cylindrical punches made of cobalt M42 high-speed steel or C2 tungsten carbide. This creates cutting edges having radii of curvature less than 0.4 {micro}m, and rake features similar to conventional lathe tools. Clearance for minimizing frictional drag of a tool results from the sputter yield dependence on ion herd target incidence angle. Numerically controlled, ultra-precision machining with micro-grooving tools results in a close matching between tool width and feature size. Microtools controllably machine 13 {micro}m wide, 4 {micro}m deep, helical grooves in polymethyl methacrylate and 6061-T6 Al cylindrical substrates. Micro-grooving tools also fabricate sinusoidal waveform features in polished metal substrates.
Date: November 5, 1999
Creator: Adams,David P.; Vasile,M. J. & Krishnan,A. S. M.
Object Type: Article
System: The UNT Digital Library
LLW Notes, Volume 10, Number 3, April/May 1995 (open access)

LLW Notes, Volume 10, Number 3, April/May 1995

Newsletter distributed to the Low-Level Radioactive Waste Forum members describing current news, policies, and legislation, as well as other information relevant to the management of low-level radioactive waste.
Date: May 5, 1995
Creator: Afton Associates, Inc.
Object Type: Journal/Magazine/Newsletter
System: The UNT Digital Library
Carbon transport in the bottom boundary layer. Final report (open access)

Carbon transport in the bottom boundary layer. Final report

This report summarizes the activities and findings from a field experiment devised to estimate the rates and mechanisms of transport of carbon across the continental shelves. The specific site chosen for the experiment was the mid-Atlantic Bight, a region off the North Carolina coast. The experiment involved a large contingent of scientists from many institutions. The specific component of the program was the transport of carbon in the bottom boundary layer. The postulate mechanisms of transport of carbon in the bottom boundary layer are: resuspension and advection, downward deposition, and accumulation. The high turbulence levels in the bottom boundary layer require the understanding of the coupling between turbulence and bottom sediments. The specific issues addressed in the work reported here were: (a) What is the sediment response to forcing by currents and waves? (b) What is the turbulence climate in the bottom boundary layer at this site? and (c) What is the rate at which settling leads to carbon sequestering in bottom sediments at offshore sites?
Date: October 5, 1998
Creator: Agrawal, Yogesh C.
Object Type: Report
System: The UNT Digital Library
Determining thermal diffusivity and defect attributes in ceramic matrix composites by infrared imaging. (open access)

Determining thermal diffusivity and defect attributes in ceramic matrix composites by infrared imaging.

Ceramic matrix composites are being developed for numerous high temperature applications, including rotors and combustors for advanced turbine engines, heat exchanger and hot-gas filters for coal gasification plants. Among the materials of interest are silicon-carbide-fiber-reinforced-silicon-carbide (SiC{sub (f)}/SiC), silicon-carbide-fiber-reinforced-silicon-nitride (SiC{sub (f)}/Si{sub 3}N{sub 4}), aluminum-oxide-reinforced-alumina (Al{sub 2}O{sub 3(f)}/Al{sub 2}O{sub 3}), etc. In the manufacturing of these ceramic composites, the conditions of the fiber/matrix interface are critical to the mechanical and thermal behavior of the component. Defects such as delaminations and non-uniform porosity can directly effect the performance. A nondestructive evaluation (NDE) method, developed at Argonne National Laboratory has proved beneficial in analyzing as-processed conditions and defect detection created during manufacturing. This NDE method uses infrared thermal imaging for fill-field quantitative measurement of the distribution of thermal diffusivity in large components. Intensity transform algorithms have been used for contrast enhancement of the output image. Nonuniformity correction and automatic gain control are used to dynamically optimize video contrast and brightness, providing additional resolution in the acquired images. Digital filtering, interpolation, and least-squares-estimation techniques have been incorporated for noise reduction and data acquisition. The Argonne NDE system has been utilized to determine thermal shock damage, density variations, and variations in fiber coating in a full …
Date: December 5, 1997
Creator: Ahuja, S.; Ellingson, W. A.; Koehl, E. R. & Stuckey, J.
Object Type: Article
System: The UNT Digital Library
Empirical Calculations of {sup 29}Si NMR Chemical Shielding Tensors: A Partial Charge Model Investigation of Hydrolysis in Organically Modified Alkoxy Silanes (open access)

Empirical Calculations of {sup 29}Si NMR Chemical Shielding Tensors: A Partial Charge Model Investigation of Hydrolysis in Organically Modified Alkoxy Silanes

Organically modified alkoxy silanes play an important role in tailoring different properties of silica produced by the sol-gel method. Changes in the size and functionality of the organic group allows control of both physical and chemical properties of the resulting gel, with the kinetics of the polymerization process playing an important role in the design of new siloxane materials. High resolution {sup 29}Si NMR has proven to be valuable tool for monitoring the polymerization reaction, and has been used to investigate a variety of organically modified alkoxy silane systems.
Date: August 5, 1999
Creator: Alam, Todd M. & Henry, Marc
Object Type: Article
System: The UNT Digital Library
Survey of high voltage electron microscopy worldwide in 1998. (open access)

Survey of high voltage electron microscopy worldwide in 1998.

High voltage TEMs were introduced commercially thirty years ago, with the installations of 500 kV Hitachi instruments at the Universities of Nagoya and Tokyo. Since that time 53 commercial instruments, having maximum accelerating potentials of 0.5-3.5 MV, will have been delivered by the end of 1998. Table 1 summarizes the sites and some information regarding those HVEMS which are available in 1998. This corrects, updates and expands an earlier report of this sort [2]. There have been three commercial HVEM manufacturers: AEI (UK), Hitachi and JEOL (Japan). The proportion of the total number of HVEMS produced by each manufacturer is similar to that reflected in Table 1: AEI and Kratos/AEI (12), Hitachi (20) and JEOL (21). The term Kratos/AEI refers to instruments delivered after the takeover of AEI by Grates in the late 1970's. In Table 1 only maximum accelerating potentials are listed, which is generally also the design value for which the resolution for imaging was optimized. It is important to realize that in many applications, especially those studying irradiation effects, much lower voltages may be employed somewhat routinely to minimize atom displacements by the incident electron beam during analysis. These minimum values range from 100 kV for the …
Date: March 5, 1998
Creator: Allen, C. W.
Object Type: Article
System: The UNT Digital Library
Radiation damage of a glass-bonded zeolite waste form using ion irradiation. (open access)

Radiation damage of a glass-bonded zeolite waste form using ion irradiation.

Glass-bonded zeolite is being considered as a candidate ceramic waste form for storing radioactive isotopes separated from spent nuclear fuel in the electrorefining process. To determine the stability of glass-bonded zeolite under irradiation, transmission electron microscope samples were irradiated using high energy helium, lead, and krypton. The major crystalline phase of the waste form, which retains alkaline and alkaline earth fission products, loses its long range order under both helium and krypton irradiation. The dose at which the long range crystalline structure is lost is about 0.4 dpa for helium and 0.1 dpa for krypton. Because the damage from lead is localized in such a small region of the sample, damage could not be recognized even at a peak damage of 50 dpa. Because the crystalline phase loses its long range structure due to irradiation, the effect on retention capacity needs to be further evaluated.
Date: December 5, 1997
Creator: Allen, T. R. & Storey, B. G.
Object Type: Article
System: The UNT Digital Library
The correlation between swelling and radiation-induced segregation in iron-chromium-nickel alloys. (open access)

The correlation between swelling and radiation-induced segregation in iron-chromium-nickel alloys.

The magnitudes of both void swelling and radiation-induced segregation (RIS) in iron-chromium-nickel alloys are dependent on bulk alloy composition. Because the diffusivity of nickel via the vacancy flux is slow relative to chromium, nickel enriches and chromium depletes at void surfaces during irradiation. This local composition change reduces the subsequent vacancy flux to the void, thereby reducing void swelling. In this work, the resistance to swelling from major element segregation is estimated using diffusivities derived from grain boundary segregation measurements in irradiated iron-chromium-nickel alloys. The resistance to void swelling in iron- and nickel-base alloys correlates with the segregation and both are functions of bulk alloy composition. Alloys that display the greatest amount of nickel enrichment and chromium depletion are found to be most resistant to void swelling, as predicted. Additionally, swelling is shown to be greater in alloys in which the RIS profiles are slow to develop.
Date: March 5, 1998
Creator: Allen, T. R.; Busby, J. T.; Kenik, E. A. & Was, G. S.
Object Type: Article
System: The UNT Digital Library
Modeling the effect of irradiation and post-irradiation annealing on grain boundary composition in austenitic Fe-Cr-Ni alloys. (open access)

Modeling the effect of irradiation and post-irradiation annealing on grain boundary composition in austenitic Fe-Cr-Ni alloys.

Many irradiation effects in Fe-Cr-Ni alloys such as radiation-induced segregation, radiation-enhanced diffusion, and void swelling are known to vary with bulk alloy composition. The development of microstructural and microchemical changes during irradiation and during post-irradiation annealing is determined by the rate of diffusion of point defects and alloying elements. To accurately predict the changes in grain boundary chemistry due to radiation-induced segregation and post-irradiation annealing, the composition dependence of diffusion parameters, such as the migration energy, must be known. A model has been developed which calculates migration diffusivity. The advantages of this calculational method are that a single set of input parameters can be used for a wide range of bulk alloy compositions, and the effects of local order can easily be incorporated into the calculations. A description of the model is presented, and model calculations are compared to segregation measurements from seven different iron-chromium-nickel alloys, irradiated with protons to doses from 0.1 to 3.0 dpa at temperatures between 200 C and 600 C. Results show that segregation trends can be modeled using a single set of input parameters with the difference between model calculation and measurement being less than 5 at%, but usually less than 2 at%. Additionally, model …
Date: March 5, 1998
Creator: Allen, T.; Busby, J. T.; Kenik, E. A. & Was, G. S.
Object Type: Article
System: The UNT Digital Library
An Anticipatory Model of Cavitation (open access)

An Anticipatory Model of Cavitation

The Anticipatory System (AS) formalism developed by Robert Rosen provides some insight into the problem of embedding intelligent behavior in machines. AS emulates the anticipatory behavior of biological systems. AS bases its behavior on its expectations about the near future and those expectations are modified as the system gains experience. The expectation is based on an internal model that is drawn from an appeal to physical reality. To be adaptive, the model must be able to update itself. To be practical, the model must run faster than real-time. The need for a physical model and the requirement that the model execute at extreme speeds, has held back the application of AS to practical problems. Two recent advances make it possible to consider the use of AS for practical intelligent sensors. First, advances in transducer technology make it possible to obtain previously unavailable data from which a model can be derived. For example, acoustic emissions (AE) can be fed into a Bayesian system identifier that enables the separation of a weak characterizing signal, such as the signature of pump cavitation precursors, from a strong masking signal, such as a pump vibration feature. The second advance is the development of extremely fast, …
Date: April 5, 1999
Creator: Allgood, G. O.; Dress Jr., W. B.; Hylton, J. O. & Kercel, S. W.
Object Type: Article
System: The UNT Digital Library
Analysis of Enriched Uranium and Weapons Plutonium Reloads for PWRs Using BRACC (open access)

Analysis of Enriched Uranium and Weapons Plutonium Reloads for PWRs Using BRACC

Comparisons of the multicycle results demonstrate that the correlation coefficients based on the CASMO3 data were implemented correctly and that the Linear Reactivity Model is acceptably accurate for missed reloads containing both uranium and weapons plutonium fuel. The expanded set of correlation coefficients make BRACC a useful tool for performing multi-cycle in-core fuel management studies of PWR cores containing weapons plutonium.
Date: June 5, 1997
Creator: Alonso, G. & Parish, T. A.
Object Type: Article
System: The UNT Digital Library
High Efficiency Release Targets for Use at ISOL Facilities: Computational Design (open access)

High Efficiency Release Targets for Use at ISOL Facilities: Computational Design

This report describes efforts made at the oak Rklge NatiOnrd Laboratory to design high- efficiency-release targets that simultaneously incorporate the short diffusion lengths, high permeabilities, controllable temperatures, and heat-removal properties required for the generation of useful radioactive ion beam (RIB) intensities for nuclear physics and astrophysics research using the isotope separation on-line (ISOL) technique. Short diffusion lengths are achieved either by using thin fibrous target materials or by coating thin layers of selected target material onto low-density carbon fibers such as reticulated-vitreous-carbon fiber (RVCF) or carbon-bonded-carbon fiber (CBCF) to form highly permeable composite target matrices. Computational studies that simulate the generation and removal of primary beam deposited heat from target materials have been conducted to optimize the design of targetheat-sink systems for generating RIBs. The results derived from diffusion release-rate simulation studies for selected targets and thermal analyses of temperature distributions within a prototype targetlheat-sink system subjected to primary ion beam irradiation will be presented in this report.
Date: October 5, 1999
Creator: Alton, G. D. & Liu, Y.
Object Type: Article
System: The UNT Digital Library
A Multi-Sample Cs-Sputter Negative Ion Source (open access)

A Multi-Sample Cs-Sputter Negative Ion Source

A multi-sample Cs sputter negative-ion source, equipped with a conical-geometry, W-surface-ionizer has been designed and fabricated that permits sample changes without disruption of on-line accelerator operation. Sample changing is effected by actuating an electro-pneumatic control system located at ground potential that drives an air-motor-driven sample-indexing-system mounted at high voltage; this arrangement avoids complications associated with indexing mechanisms that rely on electronic power-supplies located at high potential. In-beam targets are identified by LED indicator lights derived from a fiber-optic, Gray-code target-position sensor. Aspects of the overall source design and details of the indexing mechanism along with operational parameters, ion optics. intensities, and typical emittances for a variety of negative-ion species will be presented in this report.
Date: October 5, 1998
Creator: Alton, G. D.; Ball, J. A.; Bao, Y.; Cui, B.; Reed, C. A. & Williams, C.
Object Type: Article
System: The UNT Digital Library
ECR Ion Source Developments at the Oak Ridge National Laboratory (open access)

ECR Ion Source Developments at the Oak Ridge National Laboratory

New techniques for enhancing the performances of electron cyclotron resonance (ECR) ion sources are being investigated at the Oak Ridge National Laboratory. We have utilized the multiple discrete frequency technique to improve the charge state distributions extracted from conventional magnetic field geometry ECR source by injecting three frequencies into the source. A new flat central magnetic field concept, has been incorporated in the designs of a compact all-permanent-magnet source for high charge-state ion beam generation and a compact electromagnetic source for singly ionized radioactive ion beam generation for use in the Holifield Radioactive Ion Beam Facility (HRIBF) research program. A review of the three frequency injection experiments and descriptions of the design aspects of the "volume-type" ECR ion sources will be given in this report.
Date: October 5, 1998
Creator: Alton, G. D.; Liu, Y. & Meyer, F. W.
Object Type: Article
System: The UNT Digital Library
A High Efficiency, Kinetic-Ejection Negative Ion Source for RIB Generation (open access)

A High Efficiency, Kinetic-Ejection Negative Ion Source for RIB Generation

Chemically active radioactive species, diffused from RIB target materials, often arrive at the ionization chamber of the source in a variety of molecular forms. Because of the low probability for simultaneously dissociating and efficiently ionizing the individual atomic constituents of molecules with conventional hot-cathode electron-impact ion sources, the species of interest are often distributed in several mass channels in the form of molecular side-band beams and consequently, their intensities are diluted. The sputter negative ion beam generation technique offers an efficient means for simultaneously dissociating and ionizing highly electronegative atomic species present in molecular carriers. We have incorporated these principles in the design and fabrication of a kinetic ejection negative ion source and evaluated its potential for generating {sup 17,18}F{sup {minus}} beams for the Holifield Radioactive Ion Beam Facility astrophysics research program. The source utilizes Cs{sup +} beams to bombard condensable fluorine compounds that emanate from a target material, such as Al{sub 2}O{sub 3}, and are transported to the cooled inner surface of a conical-geometry cathode where they are adsorbed. The energetic Cs{sup +} beams efficiently dissociate these molecules and sputter their constituents. Since the work functions of cesiated surfaces are low, highly electronegative species such as fluorine are efficiently …
Date: October 5, 1998
Creator: Alton, G. D.; Liu, Y.; Murray, S. N. & Williams, C.
Object Type: Article
System: The UNT Digital Library
Investigation of moisture-induced embrittlement of iron aluminides. Final report (open access)

Investigation of moisture-induced embrittlement of iron aluminides. Final report

Iron-aluminum alloys with 28 at.% Al and 5 at.% Cr were shown to be susceptible to hydrogen embrittlement by exposure to both gaseous hydrogen and water vapor. This study examined the effect of the addition of zirconium and carbon on the moisture-induced hydrogen embrittlement of an Fe{sub 3}Al,Cr alloy through the evaluation of tensile properties and fatigue crack growth resistance in hydrogen gas and moisture-bearing air. Susceptibility to embrittlement was found to vary with the zirconium content while the carbon addition was found to only affect the fracture toughness. Inherent fatigue crack growth resistance and fracture toughness, as measured in an inert environment, was found to increase with the addition of 0.5 at.% Zr. The combined addition of 0.5 at.% Zr and carbon only increased the fracture toughness. The addition of 1 at.% Zr and carbon was found to have no effect on the crack growth rate when compared to the base alloy. Susceptibility to embrittlement in moisture-bearing environments was found to decrease with the addition of 0.5 at.% Zr. In gaseous hydrogen, the threshold value of the Zr-containing alloys was found to increase above that found in the inert environment while the crack growth resistance was much lower. By …
Date: June 5, 1997
Creator: Alven, D. A. & Stoloff, N.S .
Object Type: Report
System: The UNT Digital Library
Material characterization of the clay bonded silicon carbide candle filters and ash formations in the W-APF system after 500 hours of hot gas filtration at AEP. Appendix to Advanced Particle Filter: Technical progress report No. 11, January--March 1993 (open access)

Material characterization of the clay bonded silicon carbide candle filters and ash formations in the W-APF system after 500 hours of hot gas filtration at AEP. Appendix to Advanced Particle Filter: Technical progress report No. 11, January--March 1993

(1) After 500 hours of operation in the pressurized fluidized-bed combustion gas environment, the fibrous outer membrane along the clay bonded silicon carbide Schumacher Dia Schumalith candles remained intact. The fibrous outer membrane did not permit penetration of fines through the filter wall. (2) An approximate 10-15% loss of material strength occurred within the intact candle clay bonded silicon carbide matrix after 500 hours of exposure to the PFBC gas environment. A relatively uniform strength change resulted within the intact candles throughout the vessel (i.e., top to bottom plenums), as well as within the various cluster ring positions (i.e., outer versus inner ring candle filters). A somewhat higher loss of material strength, i.e., 25% was detected in fractured candle segments removed from the W-APF ash hopper. (3) Sulfur which is present in the pressurized fluidized-bed combustion gas system induced phase changes along the surface of the binder which coats the silicon carbide grains in the Schumacher Dia Schumalith candle filter matrix.
Date: April 5, 1993
Creator: Alvin, M. A.
Object Type: Report
System: The UNT Digital Library