Progress report of FY 1997 activities: The application of Kalman filtering to derive water vapor profiles from combined ground-based sensors: Raman lidar, microwave radiometers, GPS, and radiosondes (open access)

Progress report of FY 1997 activities: The application of Kalman filtering to derive water vapor profiles from combined ground-based sensors: Raman lidar, microwave radiometers, GPS, and radiosondes

Previously, the proposers have delivered to ARM a documented algorithm, that is now applied operationally, and which derives water vapor profiles from combined remote sensor measurements of water vapor radiometers, cloud-base ceilometers, and radio acoustic sounding systems (RASS). With the expanded deployment of a Raman lidar at the CART Central Facility, high quality, high vertical-resolution, water vapor profiles will be provided during nighttime clear conditions, and during clear daytime conditions, to somewhat lower altitudes. The object of this proposal was to use Kalman Filtering, previously applied to the combination of nighttime Raman lidar and microwave radiometer data, to derive high-quality water vapor profiles, during non-precipitating conditions, from data routinely available at the CART site. Input data to the algorithm would include: Raman lidar data, highly quality-controlled data of integrated moisture from microwave radiometers and GPS, RASS, and radiosondes. The algorithm will include recently-developed quality control procedures for radiometers. The focus of this years activities has been on the intercomparison of data obtained during an intensive operating period at the SGP CART site in central Oklahoma.
Date: October 5, 1997
Creator: Westwater, Edgeworth R. & Han, Yong
System: The UNT Digital Library
Task III: UCSD/DIII-D/Textor FY-97-98 Accomplishments (open access)

Task III: UCSD/DIII-D/Textor FY-97-98 Accomplishments

OAK (B204) Task III: UCSD/DIII-D/Textor FY-97-98 Accomplishments. A comprehensive report on the physics of pump limiters and particularly, the characterization of ALT-II, was published in Nuclear Fusion, bringing the project to a closure. The performance of the toroidal pump limiter was characterized under full auxiliary heating of 7 MW of NBI and ICRH and full pumping, as stated in the project milestones. Relevant highlights are: (1) Pumping with ALT-II allows for density control. (2) The achieved exhaust efficiency is 4% during NBI operation and near 2% during OH or ICRH operation. (3) We have shown that an exhaust efficiency of 2% is sufficient to satisfy the ash removal requirements of fusion reactors. (4) The plasma particle efflux and the pumped flux both increase with density and heating power. (5) The particle confinement time is less than the energy confinement time by a factor of 4. In summary, pumped belt limiters could provide the density control and ash exhaust requirements of fusion reactors.
Date: September 5, 2000
Creator: Boedo, J.A.
System: The UNT Digital Library