67 Matching Results

Results open in a new window/tab.

Full multiple scattering analysis of XANES at the Cd L3 and O K edges in CdO films combined with a soft-x-ray emission investigation (open access)

Full multiple scattering analysis of XANES at the Cd L3 and O K edges in CdO films combined with a soft-x-ray emission investigation

X-ray absorption near edge structure (XANES) at the cadmium L3 and oxygen K edges for CdO thin films grown by pulsed laser deposition method, is interpreted within the real-space multiple scattering formalism, FEFF code. The features in the experimental spectra are well reproduced by calculations for a cluster of about six and ten coordination shells around the absorber for L3 edge of Cd and K edge of O, respectively. The calculated projected electronic density of states is found to be in good agreement with unoccupied electronic states in experimental data and allows to conclude that the orbital character of the lowest energy of the conductive band is Cd-5s-O-2p. The charge transfer has been quantified and not purely ionic bonding has been found. Combined XANES and resonant inelastic x-ray scattering measurements allow us to determine the direct and indirect band gap of investigated CdO films to be {approx}2.4-eV and {approx}0.9-eV, respectively.
Date: July 5, 2010
Creator: Demchenko, I. N.; Denlinger, J. D.; Chernyshova, M.; Yu, K. M.; Speaks, D. T.; Olalde-Velasco, P. et al.
System: The UNT Digital Library
Preliminary Evaluation of the Section 1603 Treasury Grant Program for Renewable Power Projects in the United States (open access)

Preliminary Evaluation of the Section 1603 Treasury Grant Program for Renewable Power Projects in the United States

This article evaluates the first year of the Section 1603 Treasury cash grant program, which enables renewable power projects in the U.S. to elect cash grants in lieu of the federal tax credits that are otherwise available. To date, the program has been heavily subscribed, particularly by wind power projects, which had received 86% of the nearly $2.6 billion in grants that had been disbursed as of March 1, 2010. As of that date, 6.2 GW of the 10 GW of new wind capacity installed in the U.S. in 2009 had applied for grants in lieu of production tax credits. Roughly 2.4 GW of this wind capacity may not have otherwise been built in 2009 absent the grant program; this 2.4 GW may have supported approximately 51,600 short-term full-time-equivalent (FTE) gross job-years in the U.S. during the construction phase of these wind projects, and 3,860 longterm FTE gross jobs during the operational phase. The program’s popularity stems from the significant economic value that it provides to renewable power projects, relative to the otherwise available tax credits. Although grants reward investment rather than efficient performance, this evaluation finds no evidence at this time of either widespread “gold-plating” or performance problems.
Date: May 5, 2010
Creator: Bolinger, Mark; Wiser, Ryan & Darghouth, Naim
System: The UNT Digital Library
A Multi-Dimensional Classification Model for Scientific Workflow Characteristics (open access)

A Multi-Dimensional Classification Model for Scientific Workflow Characteristics

Workflows have been used to model repeatable tasks or operations in manufacturing, business process, and software. In recent years, workflows are increasingly used for orchestration of science discovery tasks that use distributed resources and web services environments through resource models such as grid and cloud computing. Workflows have disparate re uirements and constraints that affects how they might be managed in distributed environments. In this paper, we present a multi-dimensional classification model illustrated by workflow examples obtained through a survey of scientists from different domains including bioinformatics and biomedical, weather and ocean modeling, astronomy detailing their data and computational requirements. The survey results and classification model contribute to the high level understandingof scientific workflows.
Date: April 5, 2010
Creator: Ramakrishnan, Lavanya & Plale, Beth
System: The UNT Digital Library
Infrared birefringence imaging of residual stress and bulk defects in multicrystalline silicon (open access)

Infrared birefringence imaging of residual stress and bulk defects in multicrystalline silicon

This manuscript concerns the application of infrared birefringence imaging (IBI) to quantify macroscopic and microscopic internal stresses in multicrystalline silicon (mc-Si) solar cell materials. We review progress to date, and advance four closely related topics. (1) We present a method to decouple macroscopic thermally-induced residual stresses and microscopic bulk defect related stresses. In contrast to previous reports, thermally-induced residual stresses in wafer-sized samples are generally found to be less than 5 MPa, while defect-related stresses can be several times larger. (2) We describe the unique IR birefringence signatures, including stress magnitudes and directions, of common microdefects in mc-Si solar cell materials including: {beta}-SiC and {beta}-Si{sub 3}N{sub 4} microdefects, twin bands, nontwin grain boundaries, and dislocation bands. In certain defects, local stresses up to 40 MPa can be present. (3) We relate observed stresses to other topics of interest in solar cell manufacturing, including transition metal precipitation, wafer mechanical strength, and minority carrier lifetime. (4) We discuss the potential of IBI as a quality-control technique in industrial solar cell manufacturing.
Date: May 5, 2010
Creator: Ganapati, Vidya; Schoenfelder, Stephan; Castellanos, Sergio; Oener, Sebastian; Koepge, Ringo; Sampson, Aaron et al.
System: The UNT Digital Library
Multiple Syntrophic Interactions in a Terephthalate-Degrading Methanogenic Consortium (open access)

Multiple Syntrophic Interactions in a Terephthalate-Degrading Methanogenic Consortium

Terephthalate (TA) is one of the top 50 chemicals produced worldwide. Its production results in a TA-containing wastewater that is treated by anaerobic processes through a poorly understood methanogenic syntrophy. Using metagenomics, we characterized the methanogenic consortium tinside a hyper-mesophilic (i.e., between mesophilic and thermophilic), TA-degrading bioreactor. We identified genes belonging to dominant Pelotomaculum species presumably involved in TA degradation through decarboxylation, dearomatization, and modified ?-oxidation to H{sub 2}/CO{sub 2} and acetate. These intermediates are converted to CH{sub 4}/CO{sub 2} by three novel hyper-mesophilic methanogens. Additional secondary syntrophic interactions were predicted in Thermotogae, Syntrophus and candidate phyla OP5 and WWE1 populations. The OP5 encodes genes capable of anaerobic autotrophic butyrate production and Thermotogae, Syntrophus and WWE1 have the genetic potential to oxidize butyrate to COsub 2}/H{sub 2} and acetate. These observations suggest that the TA-degrading consortium consists of additional syntrophic interactions beyond the standard H{sub 2}-producing syntroph ? methanogen partnership that may serve to improve community stability.
Date: August 5, 2010
Creator: Lykidis, Athanasios; Chen, Chia-Lung; Tringe, Susannah G.; McHardy, Alice C.; Copeland, Alex 5; Kyrpides, Nikos C. et al.
System: The UNT Digital Library
Electron-cloud Build-up Simulations in the Proposed PS2: Status Report (open access)

Electron-cloud Build-up Simulations in the Proposed PS2: Status Report

A replacement for the PS storage ring is being considered, in the context of the future LHC accelerator complex upgrade, that would likely place the new machine (the PS2) in a regime where the electron-cloud (EC) effect might be significant. We report here our current estimate of the EC density ne in the bending magnets and the field-free regions at injection and extraction beam energy, for both proposed bunch spacings, tb = 25 and 50 ns. The primary model parameters exercised are the peak secondary emission yield (SEY) delta max, the electron-wall impact energy at which the SEY peaks, Emax, and the chamber radius a in the fieldfree regions. We present many of our results as a function of the bunch intensity Nb, and we provide a tentative explanation for the non-monotonic behavior of ne as a function of Nb.
Date: May 5, 2010
Creator: Furman, M. A.; De Maria, R.; Papaphilippou, Y. & Rumolo, G.
System: The UNT Digital Library
Terrestrial biogeochemical feedbacks in the climate system: from past to future (open access)

Terrestrial biogeochemical feedbacks in the climate system: from past to future

The terrestrial biosphere plays a major role in the regulation of atmospheric composition, and hence climate, through multiple interlinked biogeochemical cycles (BGC). Ice-core and other palaeoenvironmental records show a fast response of vegetation cover and exchanges with the atmosphere to past climate change, although the phasing of these responses reflects spatial patterning and complex interactions between individual biospheric feedbacks. Modern observations show a similar responsiveness of terrestrial biogeochemical cycles to anthropogenically-forced climate changes and air pollution, with equally complex feedbacks. For future conditions, although carbon cycle-climate interactions have been a major focus, other BGC feedbacks could be as important in modulating climate changes. The additional radiative forcing from terrestrial BGC feedbacks other than those conventionally attributed to the carbon cycle is in the range of 0.6 to 1.6 Wm{sup -2}; all taken together we estimate a possible maximum of around 3 Wm{sup -2} towards the end of the 21st century. There are large uncertainties associated with these estimates but, given that the majority of BGC feedbacks result in a positive forcing because of the fundamental link between metabolic stimulation and increasing temperature, improved quantification of these feedbacks and their incorporation in earth system models is necessary in order to develop …
Date: January 5, 2010
Creator: Arneth, A.; Harrison, S. P.; Zaehle, S.; Tsigaridis, K.; Menon, S.; Bartlein, P. J. et al.
System: The UNT Digital Library
Gene by Disease Interaction on Orbitofrontal Gray Matter in Cocaine Addiction (open access)

Gene by Disease Interaction on Orbitofrontal Gray Matter in Cocaine Addiction

Chronic cocaine use has been associated with structural deficits in brain regions having dopamine receptive neurons. However, the concomitant use of other drugs and common genetic variability in monoamine regulation present additional structural variability. We therefore examined variations in gray matter volume (GMV) as a function of lifetime drug use and the monoamine oxidase A (MAOA) genotype in cocaine use disorders (CUD) and healthy controls.
Date: December 5, 2010
Creator: Alia-Klein, N.; Alia-Klein, N.; Parvaz, M. A.; Woicik, P. A.; Konova, A.; Maloney, T. et al.
System: The UNT Digital Library
Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol (open access)

Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol

A detailed understanding of the sources, transformations, and fates of organic species in the environment is crucial because of the central roles that organics play in human health, biogeochemical cycles, and Earth's climate. However, such an understanding is hindered by the immense chemical complexity of environmental mixtures of organics; for example, atmospheric organic aerosol consists of at least thousands of individual compounds, all of which likely evolve chemically over their atmospheric lifetimes. Here we demonstrate the utility of describing organic aerosol (and other complex organic mixtures) in terms of average carbon oxidation state (OSC), a quantity that always increases with oxidation, and is readily measured using state-of-the-art analytical techniques. Field and laboratory measurements of OSC , using several such techniques, constrain the chemical properties of the organics and demonstrate that the formation and evolution of organic aerosol involves simultaneous changes to both carbon oxidation state and carbon number (nC).
Date: November 5, 2010
Creator: Technology, Massachusetts Institute of; Kroll, Jesse H.; Donahue, Neil M.; Jimenez, Jose L.; Kessler, Sean H.; Canagaratna, Manjula R. et al.
System: The UNT Digital Library
Derivation and Solution of Multifrequency Radiation Diffusion Equations for Homogeneous Refractive Lossy Media (open access)

Derivation and Solution of Multifrequency Radiation Diffusion Equations for Homogeneous Refractive Lossy Media

Starting from the radiation transport equation for homogeneous, refractive lossy media, we derive the corresponding time-dependent multifrequency diffusion equations. Zeroth and first moments of the transport equation couple the energy density, flux and pressure tensor. The system is closed by neglecting the temporal derivative of the flux and replacing the pressure tensor by its diagonal analogue. The system is coupled to a diffusion equation for the matter temperature. We are interested in modeling annealing of silica (SiO{sub 2}). We derive boundary conditions at a planar air-silica interface taking account of reflectivities. The spectral dimension is discretized into a finite number of intervals leading to a system of multigroup diffusion equations. Three simulations are presented. One models cooling of a silica slab, initially at 2500 K, for 10 s. The other two are 1D and 2D simulations of irradiating silica with a CO{sub 2} laser, {lambda} = 10.59 {micro}m. In 2D, we anneal a disk (radius = 0.4, thickness = 0.4 cm) with a laser, Gaussian profile (r{sub 0} = 0.5 mm for 1/e decay).
Date: January 5, 2010
Creator: Shestakov, A I; Vignes, R M & Stolken, J S
System: The UNT Digital Library
Visualization and Analysis-Oriented Reconstruction of Material Interfaces (open access)

Visualization and Analysis-Oriented Reconstruction of Material Interfaces

Reconstructing boundaries along material interfaces from volume fractions is a difficult problem, especially because the under-resolved nature of the input data allows for many correct interpretations. Worse, algorithms widely accepted as appropriate for simulation are inappropriate for visualization. In this paper, we describe a new algorithm that is specifically intended for reconstructing material interfaces for visualization and analysis requirements. The algorithm performs well with respect to memory footprint and execution time, has desirable properties in various accuracy metrics, and also produces smooth surfaces with few artifacts, even when faced with more than two materials per cell.
Date: March 5, 2010
Creator: Childs, Henry R.
System: The UNT Digital Library
REGULATORY STRATEGIES TO MINIMIZE GENERATION OF REGULATED WASTES FROM CLEANUP, CONTINUED USE OR DECOMMISSIONING OF NUCLEAR FACILITIES CONTAMINATED WITH POLYCHLORINATED BIPHENYLS (PCBS) - 11198 (open access)

REGULATORY STRATEGIES TO MINIMIZE GENERATION OF REGULATED WASTES FROM CLEANUP, CONTINUED USE OR DECOMMISSIONING OF NUCLEAR FACILITIES CONTAMINATED WITH POLYCHLORINATED BIPHENYLS (PCBS) - 11198

Disposal costs for liquid PCB radioactive waste are among the highest of any category of regulated waste. The high cost is driven by the fact that disposal options are extremely limited. Toxic Substances Control Act (TSCA) regulations require most liquids with PCBs at concentration of {ge} 50 parts-per-million to be disposed by incineration or equivalent destructive treatment. Disposal fees can be as high as $200 per gallon. This figure does not include packaging and the cost to transport the waste to the disposal facility, or the waste generator's labor costs for managing the waste prior to shipment. Minimizing the generation of liquid radioactive PCB waste is therefore a significant waste management challenge. PCB spill cleanups often generate large volumes of waste. That is because the removal of PCBs typically requires the liberal use of industrial solvents followed by a thorough rinsing process. In a nuclear facility, the cleanup process may be complicated by the presence of radiation and other occupational hazards. Building design and construction features, e.g., the presence of open grating or trenches, may also complicate cleanup. In addition to the technical challenges associated with spill cleanup, selection of the appropriate regulatory requirements and approach may be challenging. The …
Date: November 5, 2010
Creator: Lowry, N.
System: The UNT Digital Library
Progress Towards Deployable Antineutrino Detectors for Reactor Safeguards (open access)

Progress Towards Deployable Antineutrino Detectors for Reactor Safeguards

Fission reactors emit large numbers of antineutrinos and this flux may be useful for the measurement of two quantities of interest for reactor safeguards: the reactor's power and plutonium inventory throughout its cycle. The high antineutrino flux and relatively low background rates means that simple cubic meter scale detectors at tens of meters standoff can record hundreds or thousands of antineutrino events per day. Such antineutrino detectors would add online, quasi-real-time bulk material accountancy to the set of reactor monitoring tools available to the IAEA and other safeguards agencies with minimal impact on reactor operations. Between 2003 and 2008, our LLNL/SNL collaboration successfully deployed several prototype safeguards detectors at a commercial reactor in order to test both the method and the practicality of its implementation in the field. Partially on the strength of the results obtained from these deployments, an Experts Meeting was convened by the IAEA Novel Technologies Group in 2008 to assess current antineutrino detection technology and examine how it might be incorporated into the safeguards regime. Here we present a summary of our previous deployments and discuss current work that seeks to provide expanded capabilities suggested by the Experts Panel, in particular aboveground detector operation.
Date: April 5, 2010
Creator: Bowden, N; Bernstein, A; Dazeley, S; Keefer, G; Reyna, D; Cabrera-Palmer, B et al.
System: The UNT Digital Library
Imaging the early material response associated with exit surface damage in fused silica (open access)

Imaging the early material response associated with exit surface damage in fused silica

The processes involved at the onset of damage initiation on the surface of fused silica have been a topic of extensive discussion and thought for more than four decades. Limited experimental results have helped develop models covering specific aspects of the process. In this work we present the results of an experimental study aiming at imaging the material response from the onset of the observation of material modification during exposure to the laser pulse through the time point at which material ejection begins. The system involves damage initiation using a 355 nm pulse, 7.8 ns FWHM in duration and imaging of the affected material volume with spatial resolution on the order of 1 {micro}m using as strobe light a 150 ps laser pulse that is appropriately timed with respect to the pump pulse. The observations reveal that the onset of material modification is associated with regions of increased absorption, i.e., formation of an electronic excitation, leading to a reduction in the probe transmission to only a few percent within a time interval of about 1 ns. This area is subsequently rapidly expanding with a speed of about 1.2 {micro}m/ns and is accompanied by the formation and propagation of radial cracks. …
Date: November 5, 2010
Creator: Demos, S G; Raman, R N & Negres, R A
System: The UNT Digital Library
Quantitative Visualization of ChIP-chip Data by Using Linked Views (open access)

Quantitative Visualization of ChIP-chip Data by Using Linked Views

Most analyses of ChIP-chip in vivo DNA binding have focused on qualitative descriptions of whether genomic regions are bound or not. There is increasing evidence, however, that factors bind in a highly overlapping manner to the same genomic regions and that it is quantitative differences in occupancy on these commonly bound regions that are the critical determinants of the different biological specificity of factors. As a result, it is critical to have a tool to facilitate the quantitative visualization of differences between transcription factors and the genomic regions they bind to understand each factor's unique roles in the network. We have developed a framework which combines several visualizations via brushing-and-linking to allow the user to interactively analyze and explore in vivo DNA binding data of multiple transcription factors. We describe these visualization types and also provide a discussion of biological examples in this paper.
Date: November 5, 2010
Creator: Huang, Min-Yu; Weber, Gunther; Li, Xiao-Yong; Biggin, Mark & Hamann, Bernd
System: The UNT Digital Library
Reflected Blast Wave Environments from C-4 Charges (open access)

Reflected Blast Wave Environments from C-4 Charges

None
Date: March 5, 2010
Creator: Howard, W M; Kuhl, A L; Vandersall, K S; Garcia, F & Greenwood, D W
System: The UNT Digital Library
Calculation of the substitutional fraction of ion-implanted He in an Fe target (open access)

Calculation of the substitutional fraction of ion-implanted He in an Fe target

None
Date: November 5, 2010
Creator: Erhart, P. & Marian, J.
System: The UNT Digital Library
Heavy Water Components Test Reactor Decommissioning - Major Component Removal (open access)

Heavy Water Components Test Reactor Decommissioning - Major Component Removal

The Heavy Water Components Test Reactor (HWCTR) facility (Figure 1) was built in 1961, operated from 1962 to 1964, and is located in the northwest quadrant of the Savannah River Site (SRS) approximately three miles from the site boundary. The HWCTR facility is on high, well-drained ground, about 30 meters above the water table. The HWCTR was a pressurized heavy water test reactor used to develop candidate fuel designs for heavy water power reactors. It was not a defense-related facility like the materials production reactors at SRS. The reactor was moderated with heavy water and was rated at 50 megawatts thermal power. In December of 1964, operations were terminated and the facility was placed in a standby condition as a result of the decision by the U.S. Atomic Energy Commission to redirect research and development work on heavy water power reactors to reactors cooled with organic materials. For about one year, site personnel maintained the facility in a standby status, and then retired the reactor in place. In 1965, fuel assemblies were removed, systems that contained heavy water were drained, fluid piping systems were drained, deenergized and disconnected and the spent fuel basin was drained and dried. The doors of …
Date: May 5, 2010
Creator: Austin, W. & Brinkley, D.
System: The UNT Digital Library
High-Power Electrostatic Discharges in PETN: Threshold and Scaling Experiments (open access)

High-Power Electrostatic Discharges in PETN: Threshold and Scaling Experiments

There is a considerable set of data establishing the safety of PETN-based detonators that are insulted by electrostatic discharge (ESD) from a human body. However, the subject of ESD safety has garnered renewed interest because of the sparse data on high-power, low-impedance discharges that result when the source is a metallic object such as a tool. Experiments on as-built components, using pin-to-cap fault circuits through PETN-based detonators, showed significant evidence of a power dependence but with a very broad energy threshold and some uncertainty in the breakdown path. We have performed a series of experiments using a well-defined arc discharge path and a well-characterized source that is capable of independent variation of energy and power. Studies include threshold variation with power, arc length, powder surface area, and surface vs. bulk discharge paths. We find that an energy threshold variation with power does not appear to exist in the tested range of fractions to tens of MW, and that there are many subtleties to proper energy and power bookkeeping. We also present some test results for PBX 9407.
Date: March 5, 2010
Creator: Liou, W.; McCarrick, J. F.; Hodgin, R. L. & Phillips, D. F.
System: The UNT Digital Library
Laser Systems for Orbital Debris Removal (open access)

Laser Systems for Orbital Debris Removal

The use of a ground based laser for space debris cleaning was investigated by the ORION project in 1996. Since that study the greatest technological advance in the development of high energy pulsed laser systems has taken place within the NIF project at LLNL. The proposed next laser system to follow the NIF at LLNL will be a high rep rate version of the NIF based on diode-pumping rather than flashlamp excitation; the so called 'LIFE' laser system. Because a single 'LIFE' beamline could be built up in a few year time frame, and has performance characteristics relevant to the space debris clearing problem, such a beamline could enable a near term demonstration of space debris cleaning. Moreover, the specifics of debris cleaning make it possible to simplify the LIFE laser beyond what is required for a fusion drive laser, and so substantially reduce its cost. Starting with the requirements for laser intensity on the target, and then considering beam delivery, we will flow back the laser requirements needed for space debris cleaning. Using these derived requirements we will then optimize the pulse duration, the operational regime, and the output pulse energy of the laser with a focus of simplifying …
Date: February 5, 2010
Creator: Rubenchik, A M; Barty, C P; Beach, R J; Erlandson, A C & Caird, J A
System: The UNT Digital Library
Applying Human Factors during the SIS Life Cycle (open access)

Applying Human Factors during the SIS Life Cycle

Safety Instrumented Systems (SIS) are widely used in U.S. Department of Energy's (DOE) nonreactor nuclear facilities for safety-critical applications. Although use of the SIS technology and computer-based digital controls, can improve performance and safety, it potentially introduces additional complexities, such as failure modes that are not readily detectable. Either automated actions or manual (operator) actions may be required to complete the safety instrumented function to place the process in a safe state or mitigate a hazard in response to an alarm or indication. DOE will issue a new standard, Application of Safety Instrumented Systems Used at DOE Nonreactor Nuclear Facilities, to provide guidance for the design, procurement, installation, testing, maintenance, operation, and quality assurance of SIS used in safety significant functions at DOE nonreactor nuclear facilities. The DOE standard focuses on utilizing the process industry consensus standard, American National Standards Institute/ International Society of Automation (ANSI/ISA) 84.00.01, Functional Safety: Safety Instrumented Systems for the Process Industry Sector, to support reliable SIS design throughout the DOE complex. SIS design must take into account human-machine interfaces and their limitations and follow good human factors engineering (HFE) practices. HFE encompasses many diverse areas (e.g., information display, user-system interaction, alarm management, operator response, control …
Date: May 5, 2010
Creator: Avery, K.
System: The UNT Digital Library
NEUTRON MULTIPLICITY AND ACTIVE WELL NEUTRON COINCIDENCE VERIFICATION MEASUREMENTS PERFORMED FOR MARCH 2009 SEMI-ANNUAL DOE INVENTORY (open access)

NEUTRON MULTIPLICITY AND ACTIVE WELL NEUTRON COINCIDENCE VERIFICATION MEASUREMENTS PERFORMED FOR MARCH 2009 SEMI-ANNUAL DOE INVENTORY

The Analytical Development (AD) Section field nuclear measurement group performed six 'best available technique' verification measurements to satisfy a DOE requirement instituted for the March 2009 semi-annual inventory. The requirement of (1) yielded the need for SRNL Research Operations Department Material Control & Accountability (MC&A) group to measure the Pu content of five items and the highly enrich uranium (HEU) content of two. No 14Q-qualified measurement equipment was available to satisfy the requirement. The AD field nuclear group has routinely performed the required Confirmatory Measurements for the semi-annual inventories for fifteen years using sodium iodide and high purity germanium (HpGe) {gamma}-ray pulse height analysis nondestructive assay (NDA) instruments. With appropriate {gamma}-ray acquisition modeling, the HpGe spectrometers can be used to perform verification-type quantitative assay for Pu-isotopics and HEU content. The AD nuclear NDA group is widely experienced with this type of measurement and reports content for these species in requested process control, MC&A booking, and holdup measurements assays Site-wide. However none of the AD HpGe {gamma}-ray spectrometers have been 14Q-qualified, and the requirement of reference 1 specifically excluded a {gamma}-ray PHA measurement from those it would accept for the required verification measurements. The requirement of reference 1 was a new …
Date: February 5, 2010
Creator: Dewberry, R.; Ayers, J.; Tietze, F. & Klapper, K.
System: The UNT Digital Library
POST-FIRE REVEGETATION AT HANFORD (open access)

POST-FIRE REVEGETATION AT HANFORD

Range fires on the Hanford Site can have a long lasting effect on native plant communities. Wind erosion following removal of protective vegetation from fragile soils compound the damaging effect of fires. Dust storms caused by erosion create health and safety hazards to personnel, and damage facilities and equipment. The Integrated Biological Control Program (IBC) revegetates burned areas to control erosion and consequent dust. Use of native, perennial vegetation in revegetation moves the resulting plant community away from fire-prone annual weeds, and toward the native shrub-steppe that is much less likely to burn in the future. Over the past 10 years, IBC has revegetated major fire areas with good success. IBC staff is monitoring the success of these efforts, and using lessons learned to improve future efforts.
Date: January 5, 2010
Creator: Roos, R. C.; Johnson, A. R.; Caudill, J. G.; Rodriguez, J. M. & Wilde, J. W.
System: The UNT Digital Library
SOLAR PUMPED LASER MICROTHRUSTER (open access)

SOLAR PUMPED LASER MICROTHRUSTER

The development of microsatellites requires the development of engines to modify their orbit. It is natural to use solar energy to drive such engines. For an unlimited energy source the optimal thruster must use a minimal amount of expendable material to minimize launch costs. This requires the ejected material to have the maximal velocity and, hence, the ejected atoms must be as light as possible and be ejected by as high an energy density source as possible. Such a propulsion can be induced by pulses from an ultra-short laser. The ultra-short laser provides the high-energy concentration and high-ejected velocity. We suggest a microthruster system comprised of an inflatable solar concentrator, a solar panel, and a diode-pumped fiber laser. We will describe the system design and give weight estimates.
Date: February 5, 2010
Creator: Rubenchik, A M; Beach, R; Dawson, J & Siders, C W
System: The UNT Digital Library