Resource Type

4 Matching Results

Results open in a new window/tab.

Photoacoustic Spectroscopy Using a Synchrotron Light Source (open access)

Photoacoustic Spectroscopy Using a Synchrotron Light Source

We have investigated the use of a synchrotron as a source for infrared photoacoustic spectroscopy. A synchrotron has an intrinsically high radiance, which is beneficial when photoacoustic spectroscopy is applied to small samples, especially at long wavelengths.
Date: February 5, 2001
Creator: Jackson, R. S.; Michaelian, K. H. & Homes, C. C.
System: The UNT Digital Library
Development of a next-generation regional weather research and forecast model. (open access)

Development of a next-generation regional weather research and forecast model.

The Weather Research and Forecast (WRF) project is a multi-institutional effort to develop an advanced mesoscale forecast and data assimilation system that is accurate, efficient, and scalable across a range of scales and over a host of computer platforms. The first release, WRF 1.0, was November 30, 2000, with operational deployment targeted for the 2004-05 time frame. This paper provides an overview of the project and current status of the WRF development effort in the areas of numerics and physics, software and data architecture, and single-source parallelism and performance portability.
Date: February 5, 2001
Creator: Michalakes, J.; Chen, S.; Dudhia, J.; Hart, L.; Klemp, J.; Middlecoff, J. et al.
System: The UNT Digital Library
Immobilization of uranium and plutonium into borobasalt, pyroxene and andradite mineral-like compositions (open access)

Immobilization of uranium and plutonium into borobasalt, pyroxene and andradite mineral-like compositions

The immobilization of plutonium-containing wastes into stable solid compositions is one of the problems to be solved in the disposal of radioactive wastes. Research efforts on the selection, preparation with the use of the cold crucible induction melter (CCIM) technology, and investigation of materials that are most suitable for immobilizing plutonium-containing wastes of different origin have been carried out at the All-Russian Scientific Research Institute of Inorganic Materials (VNIINM) and the Institute of the Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (IGEM), Russian Academy of Sciences within the framework of agreements with Lawrence Livermore National Laboratory (LLNL, USA) regarding material and technical support. This paper presents the data on the synthesis of cerium-, uranium-, and plutonium-containing materials based on borobasalt, pyroxene, and andradite compositions in the muffle furnace and by the CCIM method. Compositions containing up to 15-18 wt% cerium oxide, 8-11 wt% uranium oxide, and 4.6-5.7 wt% plutonium oxide were obtained in laboratory facilities installed in glove boxes. Comparison studies of the materials synthesized in the muffle furnace and CCIM demonstrate the advantages of using the CCIM method. The distribution of components in the materials.
Date: February 5, 2001
Creator: Matyunin, Y I; Jardine, L J & Yudintsev, S V
System: The UNT Digital Library
Inverse problem in explosion and combustion (open access)

Inverse problem in explosion and combustion

The principal task of our studies is to provide a rational interpretation of the thermodynamic and fluid dynamic events taking place in a closed vessel upon detonation of an explosive charge and subsequent turbulent combustion of its products, acting as fuel for an exothermic reaction with air. Under such circumstances, the latter has been compressed by a reverberating shock front of the blast wave generated by the explosion. The paper presents the chemical and thermodynamic background and its numerical results, deduced for this purpose from mass spectroscopic data and pressure records, acquired upon explosion of a 0.8 kg charge of TNT in a 17 m{sup 3} chamber filled with air--a diagnostic analysis identified by the title. The evolution of the flow field and its structure are presented in a companion paper.
Date: February 5, 2001
Creator: Oppenheim, A K; Sum, T-H & Kuhl, A L
System: The UNT Digital Library