114 Matching Results

Results open in a new window/tab.

Polarized {sup 3}He(e,e'n) Asymmetries in Three Orthogonal Measurements (open access)

Polarized {sup 3}He(e,e'n) Asymmetries in Three Orthogonal Measurements

Asymmetry measurements were conducted in Jefferson Lab's experimental Hall A through electron scattering from a polarized {sup 3}He target in the quasi-elastic polarized-{sup 3}He(e,e'n) reaction. Measurements were made with the target polarized in the longitudinal direction with respect to the incoming electrons A_L, in a transverse direction that was orthogonal to the beam-line and parallel to the q-vector A_T, and in a vertical direction that was orthogonal to both the beam-line and the q-vector (A_y^0). The experiment measured $A_y^0$ at four-momentum transfer squared Q^2 of 0.127 (GeV/c)^2, 0.456 (GeV/c)^2, and 0.953 (GeV/c)^2. The A_T and A_L asymmetries were both measured at Q^2 of 0.505 (GeV/c)^2 and 0.953 (GeV/c)^2. This is the first time that three orthogonal asymmetries have been measured simultaneously. Results from this experiment are compared with the plane wave impulse approximation (PWIA) and Faddeev calculations. These results provide important tests of models that use 3He as an effective neutron target and show that the PWIA holds above Q^2 of 0.953 (GeV/c)^2.
Date: September 1, 2012
Creator: Long, Elena
System: The UNT Digital Library
Measurement of double polarized asymmetries in quasi-elastic processes ${}^3\vec{He}(\vec{e},e' d)$ and ${}^3\vec{He}(\vec{e},e' p)$ (open access)

Measurement of double polarized asymmetries in quasi-elastic processes ${}^3\vec{He}(\vec{e},e' d)$ and ${}^3\vec{He}(\vec{e},e' p)$

This thesis is dedicated to a study of a spin-isospin structure of the polarized {sup 3}He. First, an introduction to the spin structure of {sup 3}He is given, followed by a brief overview of past experiments. The main focus of the thesis is the E05-102 experiment at Jefferson Lab, in which the reactions {sup 3}{ovr He} ({rvec e}, e'd) and {sup 3}{ovr He} ({rvec e}, e'p) in the quasi-elastic region were studied. The purpose of this experiment was to better understand the effects of the S'- and D-state contributions to the {sup 3}He ground-state wave-functions by a precise measurement of beam-target asymmetries A{sub x} and A{sub z} in the range of recoil momenta from 0 to about 300 MeV/c. The experimental equipment utilized in these measurements is described, with special attention devoted to the calibration of the hadron spectrometer, BigBite. Results on the measured asymmetries are presented, together with first attempts at their comparison to the state-of-the art Faddeev calculations. The remaining open problems and challenges for future work are also discussed.
Date: August 1, 2012
Creator: Mihovilovic, Miha
System: The UNT Digital Library
Measurement of single-target spin asymmetries in the electroproduction of negative pions in the semi-inclusive deep inelastic reaction n{up_arrow}(e,e'{pi}{sup -})X on a transversely polarized {sup 3}He target (open access)

Measurement of single-target spin asymmetries in the electroproduction of negative pions in the semi-inclusive deep inelastic reaction n{up_arrow}(e,e'{pi}{sup -})X on a transversely polarized {sup 3}He target

The experiment E06010 measured the target single spin asymmetry (SSA) in the semiinclusive deep inelastic (SIDIS) n{up_arrow}(e, e'{pi}{sup -})X reaction with a transversely polarized {sup 3}He target as an e#11;ective neutron target. This is the very #12;rst independent measurement of the neutron SSA, following the measurements at HERMES and COMPASS on the proton and the deuteron. The experiment acquired data in Hall A at Je#11;erson Laboratory with a continuous electron beam of energy 5.9 GeV, probing the valence quark region, with x = 0.13 {rt_arrow} 0.41, at Q{sup 2} = 1.31 {rt_arrow} 3.1 GeV{sup 2}. The two contributing mechanisms to the measured asymmetry, viz, the Collins effect and the Sivers effect can be realized through the variation of the asymmetry as a function of the Collins and Sivers angles. The neutron Collins and Sivers moments, associated with the azimuthal angular modulations, are extracted from the measured asymmetry for the very #12;first time and are presented in this thesis. The kinematics of this experiment is comparable to the HERMES proton measurement. However, the COMPASS measurements on deuteron and proton are in the low-x region. The results of this experiment are crucial as the first step toward the extraction of quark transversity …
Date: June 1, 2010
Creator: Dutta, Chiranjib
System: The UNT Digital Library
A Measurement of the neutron electric form factor at very large momentum transfer using polaried electrions scattering from a polarized helium-3 target (open access)

A Measurement of the neutron electric form factor at very large momentum transfer using polaried electrions scattering from a polarized helium-3 target

Knowledge of the electric and magnetic elastic form factors of the nucleon is essential for an understanding of nucleon structure. Of the form factors, the electric form factor of the neutron has been measured over the smallest range in Q{sup 2} and with the lowest precision. Jefferson Lab experiment 02-013 used a novel new polarized {sup 3}He target to nearly double the range of momentum transfer in which the neutron form factor has been studied and to measure it with much higher precision. Polarized electrons were scattered off this target, and both the scattered electron and neutron were detected. G{sup n}{sub E} was measured to be 0.0242 ± 0.0020(stat) ± 0.0061(sys) and 0.0247 ± 0.0029(stat) ± 0.0031(sys) at Q{sup 2} = 1.7 and 2.5 GeV{sup 2}, respectively.
Date: October 1, 2010
Creator: Kelleher, Aidan
System: The UNT Digital Library
Enhanced performance of organic light-emitting diodes (OLEDs) and OLED-based photoluminescent sensing platforms by novel microstructures and device architectures (open access)

Enhanced performance of organic light-emitting diodes (OLEDs) and OLED-based photoluminescent sensing platforms by novel microstructures and device architectures

After a general introduction to OLEDs and OLED-based PL sensors, the transient emission mechanism of guest-host OLEDs is described both experimentally and theoretically. A monolithic and easy-to-apply process is demonstrated for fabricating multicolor microcavity OLEDs (that improve the sensor platform). The outcoupling issues of OLEDs at the substrate/air interface are addressed by using a microstructured polymer film resulting from a PS and polyethylene glycol (PEG) mixture. Based on the understanding of OLEDs and their improvement, research was done in order to realize integrated all organic-based O{sub 2} and pH sensors with improved signal intensity and sensitivity. The sensor design modification and optimization are summarized
Date: August 1, 2012
Creator: Liu, Rui
System: The UNT Digital Library
Application of Chebyshev Formalism to Identify Nonlinear Magnetic Field Components in Beam Transport Systems (open access)

Application of Chebyshev Formalism to Identify Nonlinear Magnetic Field Components in Beam Transport Systems

An experiment was conducted at Jefferson Lab's Continuous Electron Beam Accelerator Facility to develop a beam-based technique for characterizing the extent of the nonlinearity of the magnetic fields of a beam transport system. Horizontally and vertically oriented pairs of air-core kicker magnets were simultaneously driven at two different frequencies to provide a time-dependent transverse modulation of the beam orbit relative to the unperturbed reference orbit. Fourier decomposition of the position data at eight different points along the beamline was then used to measure the amplitude of these frequencies. For a purely linear transport system one expects to find solely the frequencies that were applied to the kickers with amplitudes that depend on the phase advance of the lattice. In the presence of nonlinear fields one expects to also find harmonics of the driving frequencies that depend on the order of the nonlinearity. Chebyshev polynomials and their unique properties allow one to directly quantify the magnitude of the nonlinearity with the minimum error. A calibration standard was developed using one of the sextupole magnets in a CEBAF beamline. The technique was then applied to a pair of Arc 1 dipoles and then to the magnets in the Transport Recombiner beamline to …
Date: August 1, 2012
Creator: Spata, Michael
System: The UNT Digital Library
A Measurement of the Weak Charge of the Proton through Parity Violating Electron Scattering using the Qweak Apparatus: A 21% Result (open access)

A Measurement of the Weak Charge of the Proton through Parity Violating Electron Scattering using the Qweak Apparatus: A 21% Result

After a decade of preparations, the Qweak experiment at Jefferson Lab is making the first direct measurement of the weak charge of the proton, Q^p_W. This quantity is suppressed in the Standard Model making a good candidate for search for new physics beyond the SM at the TeV scale. Operationally, we measure a small (about -0.200 ppm) parity-violating asymmetry in elastic electron-proton scattering in integrating mode while flipping the helicity of the electrons 1000 times per second. Commissioning took place Fall 2010, and we finished taking data in early summer 2012. This dissertation is based on the data taken on an initial two weeks period (Wien0). It will provide an overview of the Qweak apparatus, description of the data acquisition and analysis software systems, and final analysis and results from the Wien0 data set. The result is a 16% measurement of the parity violating electron-proton scattering asymmetry, A = -0.2788 +/- 0.0348 (stat.) +/- 0.0290 (syst.) ppm at Q^2 = 0.0250 +/- 0.0006 (GeV)^2. From this a 21% measurement of the weak charge of the proton, Q_w^p(msr)= +0.0952 +/- 0.0155 (stat.) +/- 0.0131 (syst.) +/- 0.0015 (theory) is extracted. From this a 2% measurement of the weak mixing angle, sin^2theta_W(msr)= …
Date: August 1, 2013
Creator: Beminiwattha, Rakitha
System: The UNT Digital Library
Hard photo-disintegration of proton pairs in {sup 3}He nuclei (open access)

Hard photo-disintegration of proton pairs in {sup 3}He nuclei

Extensive studies of high-energy deuteron photodisintegration over the past two decades have probed the limits of meson-baryon descriptions of nuclei and nuclear reactions. At high energies, photodisintegration cross sections have been shown to scale as a power law in s (the total cm energy squared), which suggests that quarks are the relevant degrees of freedom. In an attempt to more clearly identify the underlying dynamics at play, JLab/Hall A experiment 03-101 measured the hard photodisintegration of {sup 3}He into p-p and p-d pairs at θ{sub c.m.} = 90◦ and E{sub {gamma}} = 0.8 - 4.7 GeV. The basic idea is that the measurement should be able to test theoretical predictions for the relative size of pp versus pn disintegrations. This document presents data for the energy dependence of the high energy 90◦ c.m. photodisintegration of {sup3]He: dσ/dt(γ + {sup3}He → p + p + n{sub spectator}), and dσ/dt(γ + {sup 3}He → p + d). The cross sections were observed to scale as a function of s{sup −n} where n was found to be 11.1±0.1 and 17.4±0.5 for the two reactions respectively. The degree of scaling found for d#27;{sigma}/dt (γ + {sup 3}He → p + d) is the highest …
Date: September 1, 2011
Creator: Pomerantz, Ishay
System: The UNT Digital Library
Study of the (e,e'p) quasi-elastic reaction in complex nuclei: theory and experiment (open access)

Study of the (e,e'p) quasi-elastic reaction in complex nuclei: theory and experiment

Experimental coincidence cross section and transverse-longitudinal asymmetry A{sub TL} have been obtained for the quasielastic (e,e'p) reaction in {sup 16}O, {sup 12}C, and {sup 208}Pb in constant q-ω kinematics in the missing momentum range -350 < p{sub miss} < 350 MeV/c. In these experiments, performed in experimental Hall A of the Thomas Jefferson National Accelerator Facility (JLAB), the beam energy and the momentum and angle of the scattered electrons were kept fixed, while the angle between the proton momentum and the momentum transfer q was varied in order to map out the missing momentum distribution. The experimental cross section and A{sub TL} asymmetry have been compared with Monte Carlo simulations based on Distorted Wave Impulse Approximation (DWIA) calculations with both relativistic and non-relativistic spinor structure. The spectroscopic factors obtained for both models are in agreement with previous experimental values, while A{sub TL} measurements favor the relativistic DWIA calculation. This thesis describes the details of the experimental setup, the calibration of the spectrometers, the techniques used in the data analysis to derive the final cross sections and the A{sub TL}, the ingredients of the theoretical calculations employed and the comparison of the results with the simulations based on these theoretical models.
Date: March 1, 2010
Creator: Herraiz, Joaquin Lopez
System: The UNT Digital Library
Helicity Asymmetry Measurement for pi^0 Photoproduction with FROST (open access)

Helicity Asymmetry Measurement for pi^0 Photoproduction with FROST

This thesis reports on the first helicity asymmetry measurement for single neutral pion photoproduction using the CLAS detector in Hall B at the Thomas Jefferson National Accelerator Facility (JLab). This measurement used longitudinally polarized protons and circularly polarized photons at energies between 350 MeV and 2400 MeV. The experimental results are compared to three available model calculations.
Date: August 1, 2011
Creator: Iwamoto, Hideko
System: The UNT Digital Library
Al-Ca and Al-Fe metal-metal composite strength, conductivity, and microstructure relationships (open access)

Al-Ca and Al-Fe metal-metal composite strength, conductivity, and microstructure relationships

Deformation processed metal-metal composites (DMMC’s) are composites formed by mechanical working (i.e., rolling, swaging, or wire drawing) of two-phase, ductile metal mixtures. Since both the matrix and reinforcing phase are ductile metals, the composites can be heavily deformed to reduce the thickness and spacing of the two phases. Recent studies have shown that heavily drawn DMMCs can achieve anomalously high strength and outstanding combinations of strength and conductivity. In this study, Al-Fe wire composite with 0.07, 0.1, and 0.2 volume fractions of Fe filaments and Al-Ca wire composite with 0.03, 0.06, and 0.09 volume fractions of Ca filaments were produced in situ, and their mechanical properties were measured as a function of deformation true strain. The Al-Fe composites displayed limited deformation of the Fe phase even at high true strains, resulting in little strengthening effect in those composites. Al-9vol%Ca wire was deformed to a deformation true strain of 13.76. The resulting Ca second-phase filaments were deformed to thicknesses on the order of one micrometer. The ultimate tensile strength increased exponentially with increasing deformation true strain, reaching a value of 197 MPa at a true strain of 13.76. This value is 2.5 times higher than the value predicted by the rule …
Date: December 1, 2011
Creator: Kim, Hyong June
System: The UNT Digital Library
A 3% Measurement of the Beam Normal Single Spin Asymmetry in Forward Angle Elastic Electron-Proton Scattering using the Qweak Setup (open access)

A 3% Measurement of the Beam Normal Single Spin Asymmetry in Forward Angle Elastic Electron-Proton Scattering using the Qweak Setup

The beam normal single spin asymmetry generated in the scattering of transversely polarized electrons from unpolarized nucleons is an observable of the imaginary part of the two-photon exchange process. Moreover, it is a potential source of false asymmetry in parity violating electron scattering experiments. The Q{sub weak} experiment uses parity violating electron scattering to make a direct measurement of the weak charge of the proton. The targeted 4% measurement of the weak charge of the proton probes for parity violating new physics beyond the Standard Model. The beam normal single spin asymmetry at Q{sub weak} kinematics is at least three orders of magnitude larger than 5 ppb precision of the parity violating asymmetry. To better understand this parity conserving background, the Q{sub weak} Collaboration has performed elastic scattering measurements with fully transversely polarized electron beam on the proton and aluminum. This dissertation presents the analysis of the 3% measurement (1.3% statistical and 2.6% systematic) of beam normal single spin asymmetry in electronproton scattering at a Q2 of 0.025 (GeV/c)2. It is the most precise existing measurement of beam normal single spin asymmetry available at the time. A measurement of this precision helps to improve the theoretical models on beam normal …
Date: August 1, 2013
Creator: Waidyawansa, Dinayadura Buddhini
System: The UNT Digital Library
Study of Generalized Parton Distributions and Deeply Virtual Compton Scattering on the nucleon with the CLAS and CLAS12 detectors at the Jefferson Laboratory (open access)

Study of Generalized Parton Distributions and Deeply Virtual Compton Scattering on the nucleon with the CLAS and CLAS12 detectors at the Jefferson Laboratory

The exclusive leptoproduction of a real photon is considered to be the "cleanest" way to access the Generalized Parton Distribution (GPD). This process is called Deeply Virtual Compton Scattering (DVCS) lN {yields} lN{gamma} , and is sensitive to all the four GPDs. Measuring the DVCS cross section is one of the main goals of this thesis. In this thesis, we present the work performed to extract on a wide phase-space the DVCS cross-section from the JLab data at a beam energy of 6 GeV.
Date: November 1, 2012
Creator: Guegan, Baptiste
System: The UNT Digital Library
Measurement of Single Spin Asymmetries in Semi-Inclusive Deep Inelastic Scattering Reaction n↑ ( e,e' pi{sup +}) X at Jefferson Lab (open access)

Measurement of Single Spin Asymmetries in Semi-Inclusive Deep Inelastic Scattering Reaction n↑ ( e,e' pi{sup +}) X at Jefferson Lab

What constitutes the spin of the nucleon? The answer to this question is still not completely understood. Although we know the longitudinal quark spin content very well, the data on the transverse quark spin content of the nucleon is still very sparse. Semi-inclusive Deep Inelastic Scattering (SIDIS) using transversely polarized targets provide crucial information on this aspect. The data that is currently available was taken with proton and deuteron targets. The E06-010 experiment was performed at Jefferson Lab in Hall-A to measure the single spin asymmetries in the SIDIS reaction n↑(e, e′π{sup ±}/K{sup ±})X using transversely polarized {sup 3}He target. The experiment used the continuous electron beam provided by the CEBAF accelerator with a beam energy of 5.9 GeV. Hadrons were detected in a high-resolution spectrometer in coincidence with the scattered electrons detected by the BigBite spectrometer. The kinematic coverage focuses on the valence quark region, x = 0.19 to 0.34, at Q{sup 2} = 1.77 to 2.73 (GeV/c){sup 2}. This is the first measurement on a neutron target. The data from this experiment, when combined with the world data on the proton and the deuteron, will provide constraints on the transversity and Sivers distribution functions on both the u …
Date: June 1, 2010
Creator: Allada, Kalyan
System: The UNT Digital Library
Study of the Two-pion Photoproduction on the Deuteron (open access)

Study of the Two-pion Photoproduction on the Deuteron

Understanding the structure of baryons in terms of the fundamental interaction of the constituent quarks and gluons is one of the primary challenges in strong interaction physics. This interaction is governed by Quantum Chromodynamics (QCD), which is a theory for understanding the dynamics of strong. QCD displays the asymptotic freedom of hadrons at very short distances and also the confinement of quarks and gluons inside hadrons. However, solutions of this QCD theory in the non-perturbative domain of the interaction are extremely difficult to achieve, mainly because confinement happens on the hadronic scale on which the coupling constant is large and prevents any perturbative approach. Thus leaving us with strategies such as lattice QCD or formulating QCD sum rules to get around this problem. In exclusive hadron production the yN interaction is recognized for being a powerful method for investigating hadrons and the mysteries that still exist within the strong interaction. From reactions with the nucleon, the strong interaction can be investigated through the transition amplitudes to the N and Delta resonances. More specifically, if an electromagnetic interaction is well known then the intermediate resonance states may be evaluated through meson photoproduction. To gain more detailed insight into this interaction, we …
Date: December 1, 2012
Creator: Graham, Lewis P.
System: The UNT Digital Library
Precision Measurement of Electroproduction of pi{sup 0} near Threshold (open access)

Precision Measurement of Electroproduction of pi{sup 0} near Threshold

Electromagnetic production of neutral pions near threshold is the most basic, lowest energy reaction in which a new hadron is created. The electromagnetic interaction is well understood so measurements of this reaction can yield direct insight into the hadronic production mechanism. During the past three decades there have been many developments in both the measurement and theory of threshold pion production, starting with measurements of photo-production at Saclay in 1986 and at Mainz in 1990. These measurements indicated a surprising discrepancy with so-called Low Energy Theorems (LETs) which are based on quite fundamental symmetries and considerations. Chiral Perturbation Theory (ChPT) is an e#11;ective #12;eld theoretic description of the nuclear force which contains the underlying symmetries of the force but deals with nucleons and pions rather than quarks and gluons. It has the advantage of being applicable at low energies but requires tuning some parameters to experimental data. Once these parameters have been determined ChPT predicts how the reaction should behave as a function of the kinematic variable. When applied to the reaction, p({gamma},{pi}{sup 0})p, near threshold it explained the discrepancy with the LETs and made predictions for electroproduction, p(e,e'p){pi}#25;{sup 0}. Electroproduction measurements at Mainz in the 1990's showed a clear …
Date: May 1, 2012
Creator: Chirapatpimol, Khem
System: The UNT Digital Library
Electroproduction DE Pions Neutres Dans Le Hall a AU Jefferson Laboratory (open access)

Electroproduction DE Pions Neutres Dans Le Hall a AU Jefferson Laboratory

The past decade has seen a strong evolution of the study of the hadron structure through exclusive processes, allowing to access to a more complete description of this structure. Exclusive processes include DVCS (Deeply Virtual Compton Scattering) as well as hard exclusive meson production. This document is particularly focussed on the latter, and more particularly on exclusive neutral pion production. In this thesis is described the analysis of triple coincidence events H(e, e'{gamma}{gamma})X, which were a consequent by-product of the DVCS experiment which occured during Fall 2004 at Jefferson Lab Hall A, to extract the ep {yields} ep{pi}{sup 0} cross section. This cross section has been measured at two values of four-momentum transfer Q{sup 2} = 1.9 GeV{sup 2} and Q{sup 2} = 2.3 GeV{sup 2}. The statistical precision for these measurements is achieved at better than 5 %. The kinematic range allows to study the evolution of the extracted cross section as a function of Q{sup 2} and W. Results are be confronted with Regge inspired calculations and Generalized (GPD) predictions. An intepretation of our data within the framework of semi-inclusive deep inelastic scattering is also discussed.
Date: June 1, 2010
Creator: Fuchey, Eric
System: The UNT Digital Library
Plasminogen activator inhibitor 1: Mechanisms of its synergistic regulation by growth factors (open access)

Plasminogen activator inhibitor 1: Mechanisms of its synergistic regulation by growth factors

My research is on the synergistic regulation of PAI-1 by EGF and TGF-β. The mechanism of synergistic regulation of PAI-1 by EGF and TGF-β are addressed. Methods are described for effective identification of RNA accessible sites for antisense oligodexoxynucleotides (ODNs) and siRNA. In this study effective AS-ODN sequences for both Lcn2 and Bcl2 were identified by in vitro tiled microarray studies. Our results suggest that hybridization of ODN arrays to a target mRNA under physiological conditions might be used as a rapid and reliable in vitro method to accurately identify targets on mRNA molecules for effective antisense and potential siRNA activity in vivo.
Date: December 1, 2011
Creator: Song, Xiaoling
System: The UNT Digital Library
Two-Photon Exchange E#27;ffects in Elastic Electron-Proton Scattering (open access)

Two-Photon Exchange E#27;ffects in Elastic Electron-Proton Scattering

Two methods, Rosenbluth separation and polarization transfer, can be used to extract the proton form factor ratio #22;mu_p G_Ep/G_Mp, but they do not yield the same results. It is thought that the disagreement is due to two photon exchange corrections to the #27;differential cross sections. High precision proton Rosenbluth extractions were carried out at 102 kinematics points spanning 16 values of momentum transfer Q^2, from 0.40 to 5.76 GeV^2. Reduced cross sections were found to 1.1% or better for Q^2 less than 3 GeV^2, increasing to 4% at 5.76 GeV^2. The form factor ratios were determined to 1:5-3% for Q2 < 1.5 GeV^2, increasing to 9% by 3 GeV^2 and rapidly above. Our data agrees with prior Rosenbluth, improving upon it the 1.0 - 2.0 GeV^2 range to conclusively show a separation from polarization transfer where it had not been certain before. In addition, reduced cross sections at each Q^2 were tested for nonlinearity in the angular variable. Such a departure from linearity would be a signature of two photon exchange effects, and prior data had not been #30;sufficiently precise to show nonzero curvature. Our data begins to hint at negative curvature but does not yet show a significant departure …
Date: August 1, 2013
Creator: Laboratory, Argonne National
System: The UNT Digital Library
Search for New and Unusual Stangonia using CLAS (open access)

Search for New and Unusual Stangonia using CLAS

We perform a survey of the proton, K^+, K^- -3 charged track data, taken by the CLAS detector for the HyCLAS experiment during the g12 run-period at Jefferson Lab. We aim to study the strong decay amplitudes, partial widths and production channels of strangeonia from the CLAS g12 dataset. HyCLAS was motivated by the experimental results for gluonic hybrid meson candidates, theoretical Lattice QCD, and Flux-tube Model calculations and predictions. The experiment was designed and conducted to search and observe new forms of hadronic matter through photoproduction.
Date: March 1, 2013
Creator: Saini, Mukesh Satyapraka
System: The UNT Digital Library
A measurement of neutrino oscillations with muon neutrinos in the MINOS experiment (open access)

A measurement of neutrino oscillations with muon neutrinos in the MINOS experiment

Experimental evidence has established that neutrino flavor states evolve over time. A neutrino of a particular flavor that travels some distance can be detected in a different neutrino flavor state. The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline experiment that is designed to study this phenomenon, called neutrino oscillations. MINOS is based at Fermilab near Chicago, IL, and consists of two detectors: the Near Detector located at Fermilab, and the Far Detector, which is located in an old iron mine in Soudan, MN. Both detectors are exposed to a beam of muon neutrinos from the NuMI beamline, and MINOS measures the fraction of muon neutrinos that disappear after traveling the 734 km between the two detectors. One can measure the atmospheric neutrino mass splitting and mixing angle by observing the energy-dependence of this muon neutrino disappearance. MINOS has made several prior measurements of these parameters. Here I describe recently-developed techniques used to enhance our sensitivity to the oscillation parameters, and I present the results obtained when they are applied to a dataset that is twice as large as has been previously analyzed. We measure the mass splitting {Delta}m{sub 23}{sup 2} = (2.32{sub -0.08}{sup +0.12}) x 10{sup -3} eV{sup …
Date: January 1, 2011
Creator: Coleman, Stephen James & Coll., /William-Mary
System: The UNT Digital Library
Search for heavy metastable particles decaying to quark pairs at CDF (open access)

Search for heavy metastable particles decaying to quark pairs at CDF

We report on the search for heavy metastable particles that decay into quark pairs with a macroscopic lifetime (c{tau} {approx} 1 cm) using data taken with the CDF II detector at Fermilab. We use a data driven background approach, where they build probability density functions to model Standard Model secondary vertices from known processes in order to estimate the background contribution from the Standard Model. No statistically significant excess is observed above the background. Limits on the production cross section in a Hidden Valley benchmark phenomenology are set for various Higgs boson masses as well as metastable particle masses and lifetimes.
Date: March 1, 2011
Creator: Kwang, Shawn Andrew
System: The UNT Digital Library
First Search for the Standard Model Higgs Boson Using the Semileptonic Decay Channel: H --> WW --> mu bar nu jj (open access)

First Search for the Standard Model Higgs Boson Using the Semileptonic Decay Channel: H --> WW --> mu bar nu jj

This dissertation presents the first search for the standard model Higgs boson (H) in decay topologies containing a muon, an imbalance in transverse momentum (E{sub T}) and jets, using p{bar p} collisions at {radical}s = 1.96 TeV with an integrated luminosity of 4.3 fb{sup -1} recorded with the D0 detector at the Fermilab Tevatron Collider. This analysis is sensitive primary to contributions from Higgs bosons produced through gluon fusion, with subsequent decay H {yields} WW {yields} {mu}{nu}jj where W represents a real or virtual W boson. In the absence of signal, limits are set at 95% confidence on the production and decay of the standard model Higgs boson for M{sub H} in the range of 115-200 GeV. For M{sub H} = 165 GeV, the observed and expected limits are factors of 11.2 larger than the standard model value. Combining this channel with e{nu}jj final states and including earlier data to increase the integrated luminosity to 5.4 fb{sup -1} produces observed(expected) limits of 5.5(3.8) times the standard model value.
Date: September 1, 2010
Creator: Zelitch, Shannon Maura & U., /Virginia
System: The UNT Digital Library
Search for vector-like quark production in the lepton+jets and dilepton+jets final states using 5.4 fb-1 of Run II data (open access)

Search for vector-like quark production in the lepton+jets and dilepton+jets final states using 5.4 fb-1 of Run II data

The Standard Model of particle physics provides an excellent description of particle interactions at energies up to {approx}1 TeV, but it is expected to fail above that scale. Multiple models developed to describe phenomena above the TeV scale predict the existence of very massive, vector-like quarks. A search for single electroweak production of such particles in p{anti p} collisions at a center-of-mass energy of 1.96 TeV is performed in the W+jets and Z+jets channels. The data were collected by the D0 detector at the Fermilab Tevatron Collider and correspond to an integrated luminosity of 5.4 fb{sup -1}. Events consistent with a heavy object decaying to a vector boson and a jet are selected. We observe no significant excess in comparison to the background prediction and set 95% confidence level upper limits on production cross sections for vector-like quarks decaying to W+jet and Z+jet. Assuming a vector-like quark -- standard model quark coupling parameter {tilde {kappa}}{sub qQ} of unity, we exclude vector-like quarks with mass below 693 GeV for decays to W+jet and mass below 449 GeV for decays to Z+jet. These represent the most sensitive limits to date.
Date: October 1, 2010
Creator: Caughron, Seth
System: The UNT Digital Library