31 Matching Results

Results open in a new window/tab.

Federal Geothermal Research Program Update Fiscal Year 1999 (open access)

Federal Geothermal Research Program Update Fiscal Year 1999

The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal and Wind Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The following mission and goal statements guide the overall activities of the Office of Geothermal and Wind Technologies. This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 1999. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal and Wind Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy.
Date: February 1, 2004
Creator: unknown
System: The UNT Digital Library
Sandia National Laboratories Institutional Plan FY1994--1999 (open access)

Sandia National Laboratories Institutional Plan FY1994--1999

This report presents a five year plan for the laboratory. This plan takes advantage of the technical strengths of the lab and its staff to address issues of concern to the nation on a scope much broader than Sandia`s original mission, while maintaining the general integrity of the laboratory. The plan proposes initiatives in a number of technologies which overlap the needs of its customers and the strengths of its staff. They include: advanced manufacturing technology; electronics; information and computational technology; transportation energy technology and infrastructure; environmental technology; energy research and technology development; biomedical systems engineering; and post-cold war defense imperatives.
Date: October 1, 1993
Creator: unknown
System: The UNT Digital Library
Experimental Results of NWCF Run H4 Calcine Dissolution Studies Performed in FY-98 and -99 (open access)

Experimental Results of NWCF Run H4 Calcine Dissolution Studies Performed in FY-98 and -99

Dissolution experiments were performed on actual samples of NWCF Run H-4 radioactive calcine in fiscal years 1998 and 1999. Run H-4 is an aluminum/sodium blend calcine. Typical dissolution data indicates that between 90-95 wt% of H-4 calcine can be dissolved using 1gram of calcine per 10 mLs of 5-8M nitric acid at boiling temperature. Two liquid raffinate solutions composed of a WM-188/aluminum nitrate blend and a WM-185/aluminum nitrate blend were converted into calcine at the NWCF. Calcine made from each blend was collected and transferred to RAL for dissolution studies. The WM-188/aluminum nitrate blend calcine was dissolved with resultant solutions used as feed material for separation treatment experimentation. The WM-185/aluminum nitrate blend calcine dissolution testing was performed to determine compositional analyses of the dissolved solution and generate UDS for solid/liquid separation experiments. Analytical fusion techniques were then used to determine compositions of the solid calcine and UDS from dissolution. The results from each of these analyses were used to calculate elemental material balances around the dissolution process, validating the experimental data. This report contains all experimental data from dissolution experiments performed using both calcine blends.
Date: August 1, 2001
Creator: Garn, Troy Gerry; Herbst, Ronald Scott; Batcheller, Thomas Aquinas & Sierra, Tracy Laureena
System: The UNT Digital Library
Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-99 Status Report (open access)

Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-99 Status Report

The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1999, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed on radionuclide leaching, microbial degradation, waste neutralization, and a small mockup for grouting the INTEC underground storage tank residual heels.
Date: October 1, 1999
Creator: Herbst, Alan Keith; Mc Cray, John Alan; Kirkham, Robert John; Pao, Jenn Hai & Hinckley, Steve Harold
System: The UNT Digital Library
Genetic and Phenotype [Phenotypic] Catalog of Native Resident Trout of the interior Columbia River Basin : FY-99 Report : Populations of the Pend Oreille, Kettle, and Sanpoil River Basins of Colville National Forest. (open access)

Genetic and Phenotype [Phenotypic] Catalog of Native Resident Trout of the interior Columbia River Basin : FY-99 Report : Populations of the Pend Oreille, Kettle, and Sanpoil River Basins of Colville National Forest.

The 1994 Fish and Wildlife Program of the Northwest Power Planning Council specifies the recovery and preservation of population health of native resident fishes of the Columbia River Basin. Among the native resident species of concern are interior rainbow trout of the Columbia River redband subspecies Oncorhynchus mykiss gairdneri 1 and westslope cutthroat trout O. clarki lewisi. The westslope cutthroat trout has been petitioned for listing under the U. S. Endangered Species Act (American Wildlands et al. 1997). Before at-risk populations can be protected, their presence and status must be established. Where introgression from introduced species is a concern, as in the case of both westslope cutthroat trout and redband rainbow trout, genetic issues must be addressed as well. As is true with native trout elsewhere in the western United States (Behnke 1992), most of the remaining pure populations of these species in the Columbia River Basin are in relatively remote headwater reaches. The objective of this project is to photo-document upper Columbia Basin native resident trout populations in Washington, and to ascertain their species or subspecies identity and relative genetic purity using a nonlethal DNA technique. FY-99 was year two of a five-year project in which we conducted field …
Date: May 1, 2001
Creator: Trotter, Patrick C.
System: The UNT Digital Library
Technology and Risk Sciences Program. FY99 Annual Report (open access)

Technology and Risk Sciences Program. FY99 Annual Report

In making the transition from weapons production to environmental restoration, DOE has found that it needs to develop reliable means of defining and understanding health and environmental risks and of selecting cost-efficient environmental management technologies so that cleanup activities can be appropriately directed. Through the Technology and Risk Sciences Project, the Entergy Spatial Analysis Research Laboratory attempts to provide DOE with products that incorporate spatial analysis techniques in the risk assessment, communication, and management processes; design and evaluate methods for evaluating innovative environmental technologies; and collaborate and access technical information on risk assessment methodologies, including multimedia modeling and environmental technologies in Russia and the Ukraine, while in addition training and developing the skills of the next generation of scientists and environmental professionals.
Date: January 1, 2000
Creator: Regens, James L.
System: The UNT Digital Library
Weatherization Partnerships Project, Grant No. DE FG 0299EE27594, October 1, 1999 - December 31, 2000. Final Technical Report and FY 1999 version of 'Lessons learned the long way: Integrating utility, energy efficiency tasks with weatherization' (open access)

Weatherization Partnerships Project, Grant No. DE FG 0299EE27594, October 1, 1999 - December 31, 2000. Final Technical Report and FY 1999 version of 'Lessons learned the long way: Integrating utility, energy efficiency tasks with weatherization'

Includes reports on (1) the results of focus groups on managing utility residential efficiency [attitudes?] for low-income housing, and (2) low-income household energy consumption and expenditures patterns and weatherization opportunities 1987-1997, intensive analysis of R.E.C.S. data.
Date: November 1, 2002
Creator: Power, Meg
System: The UNT Digital Library
FY'99 final report for the expedited technology demonstration project: demonstration test results for the MSO/off-gas and salt recycle system (open access)

FY'99 final report for the expedited technology demonstration project: demonstration test results for the MSO/off-gas and salt recycle system

Molten Salt Oxidation (MSO) is a promising alternative to incineration for the treatment of a variety of organic wastes. Lawrence Livermore National Laboratory (LLNL) has prepared a facility in which an integrated pilot-scale MSO treatment system is being tested and demonstrated. The system consists of a MSO vessel with a dedicated off-gas treatment system, a salt recycle system, feed preparation equipment, and a ceramic final waste forms immobilization system. This integrated system was designed and engineered based on operational experience with an engineering-scale reactor unit and extensive laboratory development on salt recycle and final forms preparation. The MSO/off-gas system has been operational since December 1997. The salt recycle system and the ceramic final forms immobilization became operational in May 1998. In FY98, we have tested the MSO facility with various organic feeds, including chlorinated solvents, tributyl phosphate/kerosene, PCB-contaminated waste oils and solvents, booties, plastic pellets, ion exchange resins, activated carbon, radioactive-spiked organics, and well-characterized low-level liquid mixed wastes. MSO is shown to be a versatile technology for hazardous waste treatment and may be a solution to many waste disposal problems in DOE sites. The results of the demonstration conducted in FY98 has been reported [1]. In FY99 (October 1998 to …
Date: May 1, 1999
Creator: Adamson, M G & Hsu, P C
System: The UNT Digital Library
RF cavity R&D at LBNL for the NLC damping rings, FY1999 (open access)

RF cavity R&D at LBNL for the NLC damping rings, FY1999

This report contains a summary of the R&D activities at LBNL on RF cavities for the NLC damping rings during fiscal year19999. These activities include the optimization of the RF design for both efficiency and damping of higher-order (HOMs), by systematic study of the cavity profile, the effect of the beam pipe diameter, nosecone angle and gap, the cross section and position of the HOM damping waveguides and the coupler. The effect of the shape of the HOM waveguides and their intersection with the cavity wall on the local surface heating is also an important factor, since it determines the highest stresses in the cavity body. This was taken into account during the optimization so that the stresses could be reduced at the same time as the HOP damping was improved over previous designs. A new method of calculating the RF heating was employed, using a recently released high frequency electromagnetic element in ANSYS. This greatly facilitates the thermal and stress analysis of the design and fabrication methods have been developed with the goals of lower stresses, fewer parts and simpler assembly compared to previous designs. This should result in substantial cost savings. Preliminary designs are described for the cavity …
Date: November 1, 1999
Creator: Rimmer, R.A.; Corlett, J.N.; Koehler, G.; Li, D.; Hartman, N.; Rasson, J. et al.
System: The UNT Digital Library
Environmental Systems Research, FY-99 Annual Report (open access)

Environmental Systems Research, FY-99 Annual Report

The Environmental Systems Research (ESR) Program, a part of the Environmental Systems Research and Analysis (ESRA) Program, was implemented to enhance and augment the technical capabilities of the Idaho National Engineering and Environmental Laboratory (INEEL). The purpose for strengthening technical capabilities of the INEEL is to provide the technical base to serve effectively as the Environmental Management Laboratory for the Department of Energy's Office of Environmental Management (EM). The original portfolio of research activities was assembled after an analysis of the EM technology development and science needs as gathered by the Site Technology Coordination Groups (STCGs) complex-wide. Current EM investments in science and technology throughout the research community were also included in this analysis to avoid duplication of efforts. This is a progress report for the second year of the ESR Program (Fiscal Year 99). A report of activities is presented for the five ESR research investment areas: (a) Transport Aspects of Selective Mass Transport Agents, (b) Chemistry of Environmental Surfaces, (c) Materials Dynamics, (d) Characterization Science, and (e) Computational Simulation of Mechanical and Chemical Systems. In addition to the five technical areas, activities in the Science and Technology Foundations element of the program, e.g., interfaces between ESR and the …
Date: January 1, 2000
Creator: Miller, David Lynn
System: The UNT Digital Library
Functional Design Criteria for Fy 1993-2000 Groundwater Monitoring Wells (open access)

Functional Design Criteria for Fy 1993-2000 Groundwater Monitoring Wells

The purpose of this revision is to update the Line Item Project, 93-L-GFW-152 Functional Design Criteria (FDC) to reflect changes approved in change control M-24-91-6, Engineering Change Notices (ECNs), and expand the scope to include subsurface investigations along with the borehole drilling. This revision improves the ability and effectiveness of maintaining RCRA and Operational groundwater compliance by combining borehole and well drilling with subsurface data gathering objectives. The total projected number of wells to be installed under this project has decreased from 200 and the scope has been broadened to include additional subsurface investigation activities that usually occur simultaneously with most traditional borehole drilling and monitoring well installations. This includes borehole hydrogeologic characterization activities, and vadose monitoring. These activities are required under RCRA 40 CFR 264 and 265 and WAC 173-303 for site characterization, groundwater and vadose assessment and well placement.
Date: January 1, 1996
Creator: Williams, B. A.
System: The UNT Digital Library
ASCI Program 4Q FY99-Quarterly Progress Report Unclassified Projects (open access)

ASCI Program 4Q FY99-Quarterly Progress Report Unclassified Projects

PSE is made up of four technical areas, ASCI Simulation Development Environment (ASDE), Data Exploration and Management (DEM), Data Transfer and Storage (DTS), and Distributed Systems (DS). The goal of ASDE is to create a truly scalable simulation development environment across ASCI platforms. Specific objectives are to improve the environment to accelerate application development, to improve reliability of codes, and to enable better scalable performance. DEM's effort is to provide an interactive environment for efficiently and visualizing massive amounts of data. WE are working to help scientists spend more time concentrating on data understanding by providing tools that both enhance interactions and minimize unnecessary manipulations of data. The goal of DTS is to provide multiple gigabytes/sec parallel data transfer, multiple petabytes of archival mass storage, and new architectures for ''end-to-end'' I/O all helping to ensure the highest utilization of ASCI resources. DS consists of secure networking, secure distributed computing, and resource management for ASCI platforms. These three research and development activities are fundamental to the creation of the basic infrastructure for the ASCI computing environment.
Date: November 1, 1999
Creator: Pierce, R. & Christensen, R.
System: The UNT Digital Library
Hanford Site Environment Safety and Health (ES and H) FY 1999 and FY 2000 Execution Commitment Summary (open access)

Hanford Site Environment Safety and Health (ES and H) FY 1999 and FY 2000 Execution Commitment Summary

All sites in the U.S. Department of Energy (DOE) Complex prepare this report annually for the DOE Office of Environment, Safety and Health (EH). The purpose of this report is to provide a summary of the previous and current year's Environment, Safety and Health (ES&H) execution commitments and the S&H resources that support these activities. The fiscal year (FY) 1999 and 2000 information (Sieracki 1999) and data contained in the ''Hanford Site Environment, Safety and Health Fiscal Year 2001 Budget-Risk Management Summary'' (RL 1999) were the basis for preparing this report. Fiscal year 2000 finding of Office of Environmental Management (EM) and Office of Nuclear Energy, Science and Technology (NE) activities is based on the President's budget of $1,065.1 million and $28.0 million, plus $2.7 million carryover finding, respectively, as of October 31, 1999. Any funding changes as a result of the Congressional appropriation process will be reflected in the Fiscal Year 2002 ES&H Budget-Risk Management Summary to be issued in May 2000. This report provides the end-of-year status of FY 1999 ES&H execution commitments, including actual S&H expenditures, and describes planned FY 2000 ES&H execution commitments and the S&H resources needed to support those activities. This requirement is included …
Date: December 1, 1999
Creator: Reep, I. E.
System: The UNT Digital Library
Oil program implementation plan FY 1996--2000 (open access)

Oil program implementation plan FY 1996--2000

This document reaffirms the US Department of Energy (DOE) Office of Fossil Energy commitment to implement the National Oil Research Program in a way to maximize assurance of energy security, economic growth, environmental protection, jobs, improved economic competitiveness, and improved US balance of trade. There are two sections and an appendix in this document. Section 1 is background information that guided its formulation and a summary of the Oil Program Implementation Plan. This summary includes mission statements, major program drivers, oil issues and trends, budget issues, customers/stakeholders, technology transfer, measures of program effectiveness, and benefits. Section 2 contains more detailed program descriptions for the eight technical areas and the NIPER infrastructure. The eight technical areas are reservoir characterization; extraction research; exploration, drilling, and risk-based decision management; analysis and planning; technology transfer; field demonstration projects; oil downstream operations; and environmental research. Each description contains an overview of the program, descriptions on main areas, a discussion of stakeholders, impacts, planned budget projections, projected schedules with Gantt charts, and measures of effectiveness. The appendix is a summary of comments from industry on an earlier draft of the plan. Although changes were made in response to the comments, many of the suggestions will be …
Date: April 1, 1995
Creator: unknown
System: The UNT Digital Library
Tanks focus area multiyear program plan FY97-FY99 (open access)

Tanks focus area multiyear program plan FY97-FY99

The U.S. Department of Energy (DOE) continues to face a major tank remediation problem with approximately 332 tanks storing over 378,000 ml of high-level waste (HLW) and transuranic (TRU) waste across the DOE complex. Most of the tanks have significantly exceeded their life spans. Approximately 90 tanks across the DOE complex are known or assumed to have leaked. Some of the tank contents are potentially explosive. These tanks must be remediated and made safe. How- ever, regulatory drivers are more ambitious than baseline technologies and budgets will support. Therefore, the Tanks Focus Area (TFA) began operation in October 1994. The focus area manages, coordinates, and leverages technology development to provide integrated solutions to remediate problems that will accelerate safe and cost-effective cleanup and closure of DOE`s national tank system. The TFA is responsible for technology development to support DOE`s four major tank sites: Hanford Site (Washington), INEL (Idaho), Oak Ridge Reservation (ORR) (Tennessee), and Savannah River Site (SRS) (South Carolina). Its technical scope covers the major functions that comprise a complete tank remediation system: safety, characterization, retrieval, pretreatment, immobilization, and closure.
Date: August 1, 1996
Creator: unknown
System: The UNT Digital Library
Institutional Plan, FY 1995--2000 (open access)

Institutional Plan, FY 1995--2000

Sandia recently completed an updated strategic plan, the essence of which is presented in chapter 4. Sandia`s Strategic Plan 1994 takes its direction from DOE`s Fueling a Competitive Economy: Strategic Plan and provides tangible guidance for Sandia`s programs and operations. Although it is impossible to foresee precisely what activities Sandia will pursue many years from now, the strategic plan makes one point clear: the application of our scientific and engineering skills to the stewardship of the nation`s nuclear deterrent will be central to our service to the nation. We will provide the necessary institutional memory and continuity, experience base, and technical expertise to ensure the continued safety, security, and reliability of the nuclear weapons stockpile. As a multiprogram laboratory, Sandia will also continue to focus maximum effort on a broad spectrum of other topics consistent with DOE`s enduring core mission responsibilities: Defense (related to nuclear weapons), Energy, Environment (related to waste management and environmental remediation), and Basic Science.
Date: October 1, 1994
Creator: unknown
System: The UNT Digital Library
TFA Tank Focus Area - multiyear program plan FY98-FY00 (open access)

TFA Tank Focus Area - multiyear program plan FY98-FY00

The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation problem with hundreds of waste tanks containing hundreds of thousands of cubic meters of high-level waste (HLW) and transuranic (TRU) waste across the DOE complex. Approximately 80 tanks are known or assumed to have leaked. Some of the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in a safe condition and eventually remediated to minimize the risk of waste migration and/or exposure to workers, the public, and the environment. However, programmatic drivers are more ambitious than baseline technologies and budgets will support. Science and technology development investments are required to reduce the technical and programmatic risks associated with the tank remediation baselines. The Tanks Focus Area (TFA) was initiated in 1994 to serve as the DOE`s Office of Environmental Management`s (EM`s) national technology development program for radioactive waste tank remediation. The national program was formed to increase integration and realize greater benefits from DOE`s technology development budget. The TFA is responsible for managing, coordinating, and leveraging technology development to support DOE`s four major tank sites: Hanford Site (Washington), Idaho National Engineering and Environmental Laboratory (INEEL) (Idaho), …
Date: September 1, 1997
Creator: unknown
System: The UNT Digital Library
Regenerative fuel cell engineering - FY99 (open access)

Regenerative fuel cell engineering - FY99

The authors report the work conducted by the ESA-EPE Fuel Cell Engineering Team at Los Alamos National Laboratory during FY99 on regenerative fuel cell system engineering. The work was focused on the evaluation of regenerative fuel cell system components obtained through the RAFCO program. These components included a 5 kW PEM electrolyzer, a two-cell regenerative fuel cell stack, and samples of the electrolyzer membrane, anode, and cathode. The samples of the electrolyzer membrane, anode, and cathode were analyzed to determine their structure and operating characteristics. Tests were conducted on the two-cell regenerative fuel cell stack to characterize its operation as an electrolyzer and as a fuel cell. The 5 kW PEM electrolyzer was tested in the Regenerative Fuel Cell System Test Facility. These tests served to characterize the operation of the electrolyzer and, also, to verify the operation of the newly completed test facility. Future directions for this work in regenerative fuel cell systems are discussed.
Date: January 1, 2000
Creator: Inbody, Michael A.; Borup, Rodney L.; Hedstrom, James C.; Tafoya, Jose; Morton, Byron; Zook, Lois et al.
System: The UNT Digital Library
Plutonium stabilization and disposition focus area, FY 1999 and FY 2000 multi-year program plan (open access)

Plutonium stabilization and disposition focus area, FY 1999 and FY 2000 multi-year program plan

Consistent with the Environmental Management`s (EM`s) plan titled, ``Accelerating Cleanup: Paths to Closure``, and ongoing efforts within the Executive Branch and Congress, this Multi-Year Program Plan (MYPP) for the Plutonium Focus Area was written to ensure that technical gap projects are effectively managed and measured. The Plutonium Focus Area (PFA) defines and manages technology development programs that contribute to the effective stabilization of nuclear materials and their subsequent safe storage and final disposition. The scope of PFA activities includes the complete spectrum of plutonium materials, special isotopes, and other fissile materials. The PFA enables solutions to site-specific and complex-wide technology issues associated with plutonium remediation, stabilization, and preparation for disposition. The report describes the current technical activities, namely: Plutonium stabilization (9 studies); Highly enriched uranium stabilization (2 studies); Russian collaboration program (2 studies); Packaging and storage technologies (6 studies); and PFA management work package/product line (3 studies). Budget information for FY 1999 and FY 2000 is provided.
Date: March 1, 1998
Creator: unknown
System: The UNT Digital Library
OCRWM annual report to Congress FY 1999 [USDOE Office of Civilian Radioactive Waste Management] (open access)

OCRWM annual report to Congress FY 1999 [USDOE Office of Civilian Radioactive Waste Management]

During Fiscal Year 1999, the Office of Civilian Radioactive Waste Management (OCRWM) continued to make significant progress in its characterization of the Yucca Mountain, Nevada, candidate geologic repository site. Although OCRWM's appropriation for Fiscal Year 1999 was lower than requested, the Program accomplished all three success measures in the Secretary's Fiscal Year 1999 Performance Agreement with the President and completed important work in many other areas. This Annual Report reviews this work and looks toward future activities.
Date: May 1, 2000
Creator: unknown
System: The UNT Digital Library
Chemical and biological nonproliferation program. FY99 annual report (open access)

Chemical and biological nonproliferation program. FY99 annual report

This document is the first of what will become an annual report documenting the progress made by the Chemical and Biological Nonproliferation Program (CBNP). It is intended to be a summary of the program's activities that will be of interest to both policy and technical audiences. This report and the annual CBNP Summer Review Meeting are important vehicles for communication with the broader chemical and biological defense and nonproliferation communities. The Chemical and Biological Nonproliferation Program Strategic Plan is also available and provides additional detail on the program's context and goals. The body of the report consists of an overview of the program's philosophy, goals and recent progress in the major program areas. In addition, an appendix is provided with more detailed project summaries that will be of interest to the technical community.
Date: March 1, 2000
Creator: unknown
System: The UNT Digital Library
LDRD Final Report - Investigations of the impact of the process integration of deposited magnetic films for magnetic memory technologies on radiation-hardened CMOS devices and circuits - LDRD Project (FY99) (open access)

LDRD Final Report - Investigations of the impact of the process integration of deposited magnetic films for magnetic memory technologies on radiation-hardened CMOS devices and circuits - LDRD Project (FY99)

This project represented a coordinated LLNL-SNL collaboration to investigate the feasibility of developing radiation-hardened magnetic non-volatile memories using giant magnetoresistance (GMR) materials. The intent of this limited-duration study was to investigate whether giant magnetoresistance (GMR) materials similar to those used for magnetic tunnel junctions (MTJs) were process compatible with functioning CMOS circuits. Sandia's work on this project demonstrated that deposition of GMR materials did not affect the operation nor the radiation hardness of Sandia's rad-hard CMOS technology, nor did the integration of GMR materials and exposure to ionizing radiation affect the magnetic properties of the GMR films. Thus, following deposition of GMR films on rad-hard integrated circuits, both the circuits and the films survived ionizing radiation levels consistent with DOE mission requirements. Furthermore, Sandia developed techniques to pattern deposited GMR films without degrading the completed integrated circuits upon which they were deposited. The present feasibility study demonstrated all the necessary processing elements to allow fabrication of the non-volatile memory elements onto an existing CMOS chip, and even allow the use of embedded (on-chip) non-volatile memories for system-on-a-chip applications, even in demanding radiation environments. However, funding agencies DTRA, AIM, and DARPA did not have any funds available to support the required …
Date: January 1, 2000
Creator: MYERS,DAVID R.; JESSING,JEFFREY R.; SPAHN,OLGA B. & SHANEYFELT,MARTY R.
System: The UNT Digital Library
Strategic Nuclear Research Collaboration - FY99 Annual Report (open access)

Strategic Nuclear Research Collaboration - FY99 Annual Report

The Idaho National Engineering and Environmental Laboratory (INEEL) has created the Strategic Nuclear Research Collaboration. The SNRC brings together some of America's finest laboratory and university nuclear researchers in a carefully focused research program intended to produce ''breakthrough'' solutions to the difficult issues of nuclear economics, safety, non-proliferation, and nuclear waste. This integrated program aims to address obstacles that stand in the way of nuclear power development in the US These include fuel cycle concerns related to waste and proliferation, the need for more efficient regulatory practices, and the high cost of constructing and operating nuclear power plants. Funded at an FY99 level of $2.58M, the SNRC is focusing the efforts of scientists and engineers from the INEEL and the Massachusetts Institute of Technology to solve complex nuclear energy challenges in a carefully chosen, integrated portfolio of research topics. The result of this collaboration will be research that serves as a catalyst for future direct-funded nuclear research and technology development and which preserves and enhances the INEEL's role as America's leading national laboratory for nuclear power research. In its first year, the SNRC has focused on four research projects each of which address one or more of the four issues …
Date: July 1, 1999
Creator: Leahy, T. J.
System: The UNT Digital Library
Pine Hollow Watershed Project : FY 1999 Projects. (open access)

Pine Hollow Watershed Project : FY 1999 Projects.

None
Date: December 1, 1999
Creator: Staff, Sherman County Soil and Water Conservation District
System: The UNT Digital Library