33 Matching Results

Results open in a new window/tab.

Construction of Effective Electromagnetic Currents for Two-Body Quasipotential Equations (open access)

Construction of Effective Electromagnetic Currents for Two-Body Quasipotential Equations

A systematic algebraic approach for the construction of effective electro-magnetic currents consistent with relativistic two-body quasipotential equations is presented. This approach generalizes the Mandelstam formalism and applies it to a generic quasipotential reduction method. The use of Ward-Takahashi identities for the effective currents guarantees conservation of current matrix elements involving any combination of bound and scattering states. This approach is shown to reproduce previous results for current matrix elements for the particular cases of the Gross and Blankenbecler-Sugar equations. A generic method of truncation of the quasipotential effective current with respect to the number of boson exchanges is introduced.
Date: September 1, 1998
Creator: Krioukov, Dmitri
System: The UNT Digital Library
Ultrafast studies of electron dynamics at metal-dielectric interfaces (open access)

Ultrafast studies of electron dynamics at metal-dielectric interfaces

Femtosecond time- and angle-resolved two-photon photoemission spectroscopy has been used to study fundamental aspects of excited electron dynamics at metal-dielectric interfaces, including layer-by-layer evolution of electronic structure and two-dimensional electron localization. On bare Ag(111), the lifetimes of image states are dominated by their position with respect to the projected bulk band structure. The n = 2 state has a shorter lifetime than the n = 1 state due to degeneracy with the bulk conduction band. As the parallel momentum of the n = 1 image electron increases, the lifetime decreases. With decreasing temperatures, the n = 1 image electrons, with zero or nonzero parallel momentum, all become longer lived. Adsorption of one to three layers of n-heptane results in an approximately exponential increase in lifetime as a function of layer thickness. This results from the formation of a tunneling barrier through which the interfacial electrons must decay, consistent with the repulsive bulk electron affinity of n-alkanes. The lifetimes of the higher quantum states indicate that the presence of the monolayer significantly reduces coupling of the image states to the bulk band structure. These results are compared with predictions of a dielectric continuum model. The study of electron lateral motion shows …
Date: October 1, 1998
Creator: Ge, Nien-Hui
System: The UNT Digital Library
Microstructural Coarsening during Thermomechanical Fatigue and Annealing of Micro Flip-Chip Solder Joints (open access)

Microstructural Coarsening during Thermomechanical Fatigue and Annealing of Micro Flip-Chip Solder Joints

Microstructural evolution due to thermal effects was studied in micro solder joints (55 {+-} 5 {micro}m). The composition of the Sn/Pb solder studied was found to be hypereutectic with a tin content of 65--70 wt%.This was determined by Energy Dispersive X-ray analysis and confirmed with quantitative stereology. The quantitative stereological value of the surface-to-volume ratio was used to characterize and compare the coarsening during thermal cycling from 0--160 C to the coarsening during annealing at 160 C. The initial coarsening of the annealed samples was more rapid than the cycled samples, but tapered off as time to the one-half as expected. Because the substrates to which the solder was bonded have different thermal expansion coefficients, the cycled samples experienced a mechanical strain with thermal cycling. The low-strain cycled samples had a 2.8% strain imposed on the solder and failed by 1,000 cycles, despite undergoing less coarsening than the annealed samples. The high-strain cycled samples experienced a 28% strain and failed between 25 and 250 cycles. No failures were observed in the annealed samples. Failure mechanisms and processing issues unique to small, fine pitch joints are also discussed.
Date: December 1, 1998
Creator: Barney, Monica M.
System: The UNT Digital Library
Creep of Two-Phase Microstructures for Microelectronic Applications (open access)

Creep of Two-Phase Microstructures for Microelectronic Applications

None
Date: December 1, 1998
Creator: Linch Reynolds, Heidi
System: The UNT Digital Library
I. Advances in NMR Signal Processing. II. Spin Dynamics in Quantum Dissipative Systems (open access)

I. Advances in NMR Signal Processing. II. Spin Dynamics in Quantum Dissipative Systems

None
Date: November 1, 1998
Creator: Lin, Yung-Ya
System: The UNT Digital Library
Acoustic Resonance Characteristics of Rock and Concrete Containing Fractures (open access)

Acoustic Resonance Characteristics of Rock and Concrete Containing Fractures

None
Date: August 1, 1998
Creator: Nakagawa, S.
System: The UNT Digital Library
DC SQUID Spectrometers for Nuclear Quadrupole and Low-Field Nuclear Magnetic Resonance Spectroscopy (open access)

DC SQUID Spectrometers for Nuclear Quadrupole and Low-Field Nuclear Magnetic Resonance Spectroscopy

None
Date: April 1, 1998
Creator: TonThat, Dinh M.
System: The UNT Digital Library
A proper time dependent measurement of Delta M {sub D} using jet charge and soft lepton flavor tagging (open access)

A proper time dependent measurement of Delta M {sub D} using jet charge and soft lepton flavor tagging

This thesis presents a proper time dependent measurement of the B{sup 0}{sub d} mixing frequency {Delta}M{sub d} using jet charge and soft lepton flavor tagging in p - {anti p} collisions at {radical}s = 1.8 TeV. The measurement uses the inclusive e and {mu} trigger data of the CDF detector from an integrated luminosity of 91 pb{sub -1}. The proper time at decay is measured from a partial reconstruction of the B associated with the trigger lepton. The measurement of {Delta}M{sub d} yields {Delta}M{sub d} = 0.50 {+-} 0.05 {+-} 0.05 {bar h} ps{sup -1} where the first error is statistical and the second systematic. The flavor tagging methods used give a measured effective efficiency {epsilon}D{sup 2} of o Jet Charge: {epsilon}D{sup 2} (0.78 + 0.12 + 0.09) % o Soft Lepton: {epsilon}D{sup 2} (1.07 + 0.09 + 0.10) % where the first error is statistical and the second systematic.
Date: August 1, 1998
Creator: unknown
System: The UNT Digital Library
On the geometry of inhomogeneous quantum groups (open access)

On the geometry of inhomogeneous quantum groups

The author gives a pedagogical introduction to the differential calculus on quantum groups by stressing at all stages the connection with the classical case. He further analyzes the relation between differential calculus and quantum Lie algebra of left (right) invariant vectorfields. Equivalent definitions of bicovariant differential calculus are studied and their geometrical interpretation is explained. From these data he constructs and analyzes the space of vectorfields, and naturally introduces a contraction operator and a Lie derivative. Their properties are discussed.
Date: January 1, 1998
Creator: Aschieri, P.
System: The UNT Digital Library
Control of nonlinear systems using periodic parametric perturbations with application to a reversed field pinch (open access)

Control of nonlinear systems using periodic parametric perturbations with application to a reversed field pinch

In this thesis, the possibility of controlling low- and high-dimensional chaotic systems by periodically driving an accessible system parameter is examined. This method has been carried out on several numerical systems and the MST Reversed Field Pinch. The numerical systems investigated include the logistic equation, the Lorenz equations, the Roessler equations, a coupled lattice of logistic equations, a coupled lattice of Lorenz equations, the Yoshida equations, which model tearing mode fluctuations in a plasma, and a neural net model for magnetic fluctuations on MST. This method was tested on the MST by sinusoidally driving a magnetic flux through the toroidal gap of the device. Numerically, periodic drives were found to be most effective at producing limit cycle behavior or significantly reducing the dimension of the system when the perturbation frequency was near natural frequencies of unstable periodic orbits embedded in the attractor of the unperturbed system. Several different unstable periodic orbits have been stabilized in this way for the low-dimensional numerical systems, sometimes with perturbation amplitudes that were less than 5% of the nominal value of the parameter being perturbed. In high-dimensional systems, limit cycle behavior and significant decreases in the system dimension were also achieved using perturbations with frequencies …
Date: June 1, 1998
Creator: Mirus, Kevin A.
System: The UNT Digital Library
Advanced far infrared blocked impurity band detectors based on germanium liquid phase epitaxy (open access)

Advanced far infrared blocked impurity band detectors based on germanium liquid phase epitaxy

This research has shown that epilayers with residual impurity concentrations of 5 x 10{sup 13} cm{sup {minus}3} can be grown by producing the purest Pb available in the world. These epilayers have extremely low minority acceptor concentrations, which is ideal for fabrication of IR absorbing layers. The Pb LPE growth of Ge also has the advantageous property of gettering Cu from the epilayer and the substrate. Epilayers have been grown with intentional Sb doping for IR absorption on lightly doped substrates. This research has proven that properly working Ge BIB detectors can be fabricated from the liquid phase as long as pure enough solvents are available. The detectors have responded at proper wavelengths when reversed biased even though the response did not quite reach minimum wavenumbers. Optimization of the Sb doping concentration should further decrease the photoionization energy of these detectors. Ge BIB detectors have been fabricated that respond to 60 cm{sup {minus}1} with low responsivity. Through reduction of the minority residual impurities, detector performance has reached responsivities of 1 A/W. These detectors have exhibited quantum efficiency and NEP values that rival conventional photoconductors and are expected to provide a much more sensitive tool for new scientific discoveries in a …
Date: May 1, 1998
Creator: Olsen, C.S.
System: The UNT Digital Library
Gas Phase Chromatography of some Group 4, 5, and 6 Halides (open access)

Gas Phase Chromatography of some Group 4, 5, and 6 Halides

Gas phase chromatography using The Heavy Element Volatility Instrument (HEVI) and the On Line Gas Apparatus (OLGA III) was used to determine volatilities of ZrBr{sub 4}, HfBr{sub 4}, RfBr{sub 4}, NbBr{sub 5}, TaOBr{sub 3}, HaCl{sub 5}, WBr{sub 6}, FrBr, and BiBr{sub 3}. Short-lived isotopes of Zr, Hf, Rf, Nb, Ta, Ha, W, and Bi were produced via compound nucleus reactions at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory and transported to the experimental apparatus using a He gas transport system. The isotopes were halogenated, separated from the other reaction products, and their volatilities determined by isothermal gas phase chromatography. Adsorption Enthalpy ({Delta}H{sub a}) values for these compounds were calculated using a Monte Carlo simulation program modeling the gas phase chromatography column. All bromides showed lower volatility than molecules of similar molecular structures formed as chlorides, but followed similar trends by central element. Tantalum was observed to form the oxybromide, analogous to the formation of the oxychloride under the same conditions. For the group 4 elements, the following order in volatility and {Delta}H{sub a} was observed: RfBr{sub 4} > ZrBr{sub 4} > HfBr{sub 4}. The {Delta}H{sub a} values determined for the group 4, 5, and 6 halides are in general …
Date: October 1, 1998
Creator: Sylwester, Eric Robert
System: The UNT Digital Library
The applicability of certain Monte Carlo methods to the analysis of interacting polymers (open access)

The applicability of certain Monte Carlo methods to the analysis of interacting polymers

The authors consider polymers, modeled as self-avoiding walks with interactions on a hexagonal lattice, and examine the applicability of certain Monte Carlo methods for estimating their mean properties at equilibrium. Specifically, the authors use the pivoting algorithm of Madras and Sokal and Metroplis rejection to locate the phase transition, which is known to occur at {beta}{sub crit} {approx} 0.99, and to recalculate the known value of the critical exponent {nu} {approx} 0.58 of the system for {beta} = {beta}{sub crit}. Although the pivoting-Metropolis algorithm works well for short walks (N < 300), for larger N the Metropolis criterion combined with the self-avoidance constraint lead to an unacceptably small acceptance fraction. In addition, the algorithm becomes effectively non-ergodic, getting trapped in valleys whose centers are local energy minima in phase space, leading to convergence towards different values of {nu}. The authors use a variety of tools, e.g. entropy estimation and histograms, to improve the results for large N, but they are only of limited effectiveness. Their estimate of {beta}{sub crit} using smaller values of N is 1.01 {+-} 0.01, and the estimate for {nu} at this value of {beta} is 0.59 {+-} 0.005. They conclude that even a seemingly simple system …
Date: May 1, 1998
Creator: Krapp, D.M. Jr.
System: The UNT Digital Library
Effects of pore fluids in the subsurface on ultrasonic wave propagation (open access)

Effects of pore fluids in the subsurface on ultrasonic wave propagation

This thesis investigates ultrasonic wave propagation in unconsolidated sands in the presence of different pore fluids. Laboratory experiments have been conducted in the sub-MHz range using quartz sand fully saturated with one or two liquids. Elastic wave propagation in unconsolidated granular material is computed with different numerical models: in one-dimension a scattering model based on an analytical propagator solution, in two dimensions a numerical approach using the boundary integral equation method, in three dimensions the local flow model (LFM), the combined Biot and squirt flow theory (BISQ) and the dynamic composite elastic medium theory (DYCEM). The combination of theoretical and experimental analysis yields a better understanding of how wave propagation in unconsolidated sand is affected by (a) homogeneous phase distribution; (b) inhomogeneous phase distribution, (fingering, gas inclusions); (c) pore fluids of different viscosity; (d) wettabilities of a porous medium. The first study reveals that the main ultrasonic P-wave signatures, as a function of the fraction on nonaqueous-phase liquids in initially water-saturated sand samples, can be explained by a 1-D scattering model. The next study investigates effects of pore fluid viscosity on elastic wave propagation, in laboratory experiments conducted with sand samples saturated with fluids of different viscosities. The last study …
Date: May 1, 1998
Creator: Seifert, P.K.
System: The UNT Digital Library
Ultrashort X-ray pulse science (open access)

Ultrashort X-ray pulse science

A variety of phenomena involves atomic motion on the femtosecond time-scale. These phenomena have been studied using ultrashort optical pulses, which indirectly probe atomic positions through changes in optical properties. Because x-rays can more directly probe atomic positions, ultrashort x-ray pulses are better suited for the study of ultrafast structural dynamics. One approach towards generating ultrashort x-ray pulses is by 90{sup o} Thomson scattering between terawatt laser pulses and relativistic electrons. Using this technique, the author generated {approx} 300 fs, 30 keV (0.4 {angstrom}) x-ray pulses. These x-ray pulses are absolutely synchronized with ultrashort laser pulses, allowing femtosecond optical pump/x-ray probe experiments to be performed. Using the right-angle Thomson scattering x-ray source, the author performed time-resolved x-ray diffraction studies of laser-perturbated InSb. These experiments revealed a delayed onset of lattice expansion. This delay is due to the energy relaxation from a dense electron-hole plasma to the lattice. The dense electron-hole plasma first undergoes Auger recombination, which reduces the carrier concentration while maintaining energy content. Longitudinal-optic (LO) phonon emission then couples energy to the lattice. LO phonon decay into acoustic phonons, and acoustic phonon propagation then causes the growth of a thermally expanded layer. Source characterization is instrumental in utilizing ultrashort …
Date: May 1, 1998
Creator: Chin, Alan H.
System: The UNT Digital Library
Markov transitions and the propagation of chaos (open access)

Markov transitions and the propagation of chaos

The propagation of chaos is a central concept of kinetic theory that serves to relate the equations of Boltzmann and Vlasov to the dynamics of many-particle systems. Propagation of chaos means that molecular chaos, i.e., the stochastic independence of two random particles in a many-particle system, persists in time, as the number of particles tends to infinity. We establish a necessary and sufficient condition for a family of general n-particle Markov processes to propagate chaos. This condition is expressed in terms of the Markov transition functions associated to the n-particle processes, and it amounts to saying that chaos of random initial states propagates if it propagates for pure initial states. Our proof of this result relies on the weak convergence approach to the study of chaos due to Sztitman and Tanaka. We assume that the space in which the particles live is homomorphic to a complete and separable metric space so that we may invoke Prohorov's theorem in our proof. We also s how that, if the particles can be in only finitely many states, then molecular chaos implies that the specific entropies in the n-particle distributions converge to the entropy of the limiting single-particle distribution.
Date: December 1, 1998
Creator: Gottlieb, A.
System: The UNT Digital Library
A study of tearing modes via electron cyclotron emission from tokamak plasmas (open access)

A study of tearing modes via electron cyclotron emission from tokamak plasmas

This thesis studies several tearing mode problems from both theoretical and experimental points of view. A major part of this thesis is to demonstrate that Electron Cyclotron Emission (ECE) is an excellent diagnostic for studying an MHD mode structure and its properties in a tokamak plasma. It is shown that an MHD mode can be detected from the electron temperature fluctuations measured by ECE. The amplitude and phase profiles of the fluctuations contain detailed information about the mode structure. The ECE fluctuation phase profile indicates the magnetic island deformation due to the combination of sheared flow and viscosity. A model is presented to relate qualitatively the observed phase gradient to the local magnetic field, flow velocity shear and viscosity in a 2D slab geometry, using an ideal Ohm`s law and the plasma momentum equation including flow and viscosity. Numerical solution of the resultant Grad-Shafranov-like equation describing the deformed island shows that the experimentally observed value of the phase gradient can be obtained under realistic parameters for the shear in the flow velocity and viscosity. A new approach to the tearing mode stability boundary and saturation level is also presented.
Date: July 1, 1998
Creator: Ren, C.
System: The UNT Digital Library
Controlling fluctuations and transport in the reversed field pinch with edge current drive and plasma biasing (open access)

Controlling fluctuations and transport in the reversed field pinch with edge current drive and plasma biasing

Two techniques are employed in the Madison Symmetric Torus (MST) to test and control different aspects of fluctuation induced transport in the Reversed Field Pinch (RFP). Auxiliary edge currents are driven along the magnetic field to modify magnetic fluctuations, and the particle and energy transport associated with them. In addition, strong edge flows are produced by plasma biasing. Their effect on electrostatic fluctuations and the associated particle losses is studied. Both techniques are accomplished using miniature insertable plasma sources that are biased negatively to inject electrons. This type of emissive electrode is shown to reliably produce intense, directional current without significant contamination by impurities. The two most important conclusions derived from these studies are that the collective modes resonant at the reversal surface play a role in global plasma confinement, and that these modes can be controlled by modifying the parallel current profile outside of the reversal surface. This confirms predictions based on magnetohydrodynamic (MHD) simulations that auxiliary current drive in the sense to flatten the parallel current profile can be successful in controlling magnetic fluctuations in the RFP. However, these studies expand the group of magnetic modes believed to cause transport in MST and suggest that current profile control …
Date: September 1, 1998
Creator: Craig, D.J.G.
System: The UNT Digital Library
Proton-Decay Spectroscopic Studies of the Exotic Nuclides {sup 23}Al, {sup 23}Si, {sup 22}Al and {sup 77}Rb (open access)

Proton-Decay Spectroscopic Studies of the Exotic Nuclides {sup 23}Al, {sup 23}Si, {sup 22}Al and {sup 77}Rb

None
Date: September 1, 1998
Creator: Rowe, M.W.
System: The UNT Digital Library
Naturalness and supersymmetry (open access)

Naturalness and supersymmetry

In this thesis, the author argues that the supersymmetric Standard Model, while avoiding the fine tuning in electroweak symmetry breaking, requires unnaturalness/fine tuning in some (other) sector of the theory. For example, Baryon and Lepton number violating operators are allowed which lead to proton decay and flavor changing neutral currents. He studies some of the constraints from the latter in this thesis. He has to impose an R-parity for the theory to be both natural and viable. In the absence of flavor symmetries, the supersymmetry breaking masses for the squarks and sleptons lead to too large flavor changing neutral currents. He shows that two of the solutions to this problem, gauge mediation of supersymmetry breaking and making the scalars of the first two generations heavier than a few TeV, reintroduce fine tuning in electroweak symmetry breaking. He also constructs a model of low energy gauge mediation with a non-minimal messenger sector which improves the fine tuning and also generates required Higgs mass terms. He shows that this model can be derived from a Grand Unified Theory despite the non-minimal spectrum.
Date: May 1, 1998
Creator: Agashe, K.
System: The UNT Digital Library
The phase space of the focused cubic Schroedinger equation: A numerical study (open access)

The phase space of the focused cubic Schroedinger equation: A numerical study

In a paper of 1988 [41] on statistical mechanics of the nonlinear Schroedinger equation, it was observed that a Gibbs canonical ensemble associated with the nonlinear Schroedinger equation exhibits behavior reminiscent of a phase transition in classical statistical mechanics. The existence of a phase transition in the canonical ensemble of the nonlinear Schroedinger equation would be very interesting and would have important implications for the role of this equation in modeling physical phenomena; it would also have an important bearing on the theory of weak solutions of nonlinear wave equations. The cubic Schroedinger equation, as will be shown later, is equivalent to the self-induction approximation for vortices, which is a widely used equation of motion for a thin vortex filament in classical and superfluid mechanics. The existence of a phase transition in such a system would be very interesting and actually very surprising for the following reasons: in classical fluid mechanics it is believed that the turbulent regime is dominated by strong vortex stretching, while the vortex system described by the cubic Schroedinger equation does not allow for stretching. In superfluid mechanics the self-induction approximation and its modifications have been used to describe the motion of thin superfluid vortices, which …
Date: May 1, 1998
Creator: Burlakov, Y.O.
System: The UNT Digital Library
A viscoplastic model of expanding cylindrical shells subjected to internal explosive detonations (open access)

A viscoplastic model of expanding cylindrical shells subjected to internal explosive detonations

Magnetic flux compression generators rely on the expansion of thin ductile shells to generate magnetic fields. These thin shells are filled with high explosives, which when detonated, cause the shell to expand to over 200% strain at strain-rates on the order of 10{sup 4} s{sup {minus}1}. Experimental data indicate the development and growth of multiple plastic instabilities which appear in a quasi-periodic pattern on the surfaces of the shells. These quasi-periodic instabilities are connected by localized zones of intense shear that are oriented approximately 45{degree} from the outward radial direction. The quasi-periodic instabilities continue to develop and eventually become through-cracks, causing the shell to fragment. A viscoplastic constitutive model is formulated to model the high strain-rate expansion and provide insight into the development of plastic instabilities. The formulation of the viscoplastic constitutive model includes the effects of shock heating and damage in the form of microvoid nucleation, growth, and coalescence in the expanding shell. This model uses the Johnson-Cook strength model with the Mie-Grueneisen equation of state and a modified Gurson yield surface. The constitutive model includes the modifications proposed by Tvergaard and the plastic strain controlled nucleation introduced by Neeleman. The constitutive model is implemented as a user material …
Date: April 1, 1998
Creator: Martineau, R.L.
System: The UNT Digital Library
Production of low axial energy spread ion beams with multicusp sources (open access)

Production of low axial energy spread ion beams with multicusp sources

Multicusp ion sources are capable of producing ions with low axial energy spread which are necessary in applications such as: ion projection lithography (IPL) and focused ion beams for the next generation lithographic tools and nuclear science experiments such as radioactive ion beam production. The axial ion energy spread for multicusp source is approximately 6 eV which is too large for IPL and radioactive ion beam applications. The addition of a magnetic filter which consists of a pair of permanent magnets to the multicusp source reduces the energy spread considerably. The reduction is due to the improvement in the uniformity of the axial plasma potential distribution in the discharge region. Axial ion energy spread of the filament driven ion source has been measured using three different techniques. In all cases, it was found to be less than 2 eV. Energy spread of the radio frequency (RF) driven source has also been explored, and it was found to be less than 3 eV with the proper RF-shielding. A new multicusp source configuration has been designed and constructed to further reduce the energy spread. To achieve a more uniform axial plasma potential distribution, a cylindrical magnetic filter has been designed and constructed …
Date: May 1, 1998
Creator: Lee, Y.H.Y.
System: The UNT Digital Library
Time resolved studies of bond activation by organometallic complexes (open access)

Time resolved studies of bond activation by organometallic complexes

In 1971, Jetz and Graham discovered that the silicon-hydrogen bond in silanes could be broken under mild photochemical conditions in the presence of certain transition metal carbonyls. Such reactions fall within the class of oxidative addition. A decade later, similar reactivity was discovered in alkanes. In these cases a C-H bond in non-functionalized alkanes was broken through the oxidative addition of Cp*Ir(H){sub 2}L (Cp* = (CH{sub 3}){sub 5}C{sub 5}, L = PPh{sub 3}, Ph = C{sub 6}H{sub 5}) to form Cp*ML(R)(H) or of Cp*Ir(CO){sub 2} to form Cp*Ir(CO)(R)(H). These discoveries opened an entirely new field of research, one which naturally included mechanistic studies aimed at elucidating the various paths involved in these and related reactions. Much was learned from these experiments but they shared the disadvantage of studying under highly non-standard conditions a system which is of interest largely because of its characteristics under standard conditions. Ultrafast time-resolved IR spectroscopy provides an ideal solution to this problem; because it allows the resolution of chemical events taking place on the femto-through picosecond time scale, it is possible to study this important class of reactions under the ambient conditions which are most of interest to the practicing synthetic chemist. Certain of the …
Date: May 1, 1998
Creator: Wilkens, M. J.
System: The UNT Digital Library