XFEM: Exploratory Research into the Extended Finite-Element Method, FY02 LDRD Final Report (open access)

XFEM: Exploratory Research into the Extended Finite-Element Method, FY02 LDRD Final Report

This report is one of two components, the first an overview document outlining the goals and results of the XFEM LDRD project, and the other (titled ''Structured Extended Finite Element Methods of Solids defined by Implicit Surfaces'') detailing the scientific advances developed under FY01/FY02 LDRD funding. The XFEM (Extended Finite-Element Method) Engineering LDRD/ER Project was motivated by three research and development goals: (1) the extensions of standard finite-element technology into important new research venues of interest to the Engineering Directorate, (2) the automation of much of the engineering analysis workflow, so as to improve the productivity of mesh-generation and problem setup processes, and (3) the development of scalable software tools to facilitate innovation in XFEM analysis and methods development. The driving principle behind this LDRD project was to demonstrate the computational technology required to perform mechanical analysis of complex solids, with minimal extra effort required on the part of mechanical analysts. This need arises both from the growing workload of LLNL analysts in problem setup and mesh generation, and from the requirement that actual as-built mechanical configurations be analyzed. Many of the most important programmatic drivers for mechanical analysis require that the actual (e.g., deformed, aged, damaged) geometric configuration of …
Date: February 26, 2003
Creator: Mish, K.
System: The UNT Digital Library
Results of Performance Evaluation Testing of Electrical Leak-Detection Methods at the Hanford Mock Tank Site--FY 2002-2003 (open access)

Results of Performance Evaluation Testing of Electrical Leak-Detection Methods at the Hanford Mock Tank Site--FY 2002-2003

Application of two electrical resistivity methods at the Hanford Site Mock Tank during 2002, indicate the viability of the methods as possible leak-detection tools for SST retrieval operations. Electrical Resistivity Tomography and High-Resolution Resistivity were used over a 109-day period to detect leakage of a waste simulant beneath the tank. The results of the test indicate that both of these two methods, and subset methods may be applicable to SST leak detection.
Date: February 1, 2003
Creator: Barnett, D. Brent; Gee, Glendon W.; Sweeney, Mark D.; Johnson, Michael D.; Medina, Victor F.; Mendoza, Donaldo P. et al.
System: The UNT Digital Library
Annual Hanford Seismic Report for Fiscal Year 2002 (open access)

Annual Hanford Seismic Report for Fiscal Year 2002

This report summarizes the earthquake activity on Hanford for FY 2002. Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. For the Hanford Seismic Network, there were 1,177 triggers during fiscal year 2002. Of these triggers, 553 were earthquakes. Two earthquakes were located in the Hanford Seismic Network area. Stratigraphically 13 occurred in the Columbia River basalt, 12 were earthquakes in the pre-basalt sediments, and 17 were earthquakes in the crystalline basement. Geographically, 13 earthquakes …
Date: November 15, 2002
Creator: Hartshorn, Donald C.; Reidel, Steve P. & Rohay, Alan C.
System: The UNT Digital Library
Geologic and Wireline Summaries from Fiscal Year 2002 ILAW Boreholes (open access)

Geologic and Wireline Summaries from Fiscal Year 2002 ILAW Boreholes

Four boreholes were drilled at the Immobilized Low-Activity Waste Disposal Site in April 2002. Three were completed as groundwater monitoring wells. This report documents the results of the drilling and data collected from the drilling.
Date: September 30, 2002
Creator: Reidel, Steve P. & Ho, Anita M.
System: The UNT Digital Library
Summary of Hanford Subsurface Air Flow and Extraction (SAFE) Activities for Fiscal Year 2002 (open access)

Summary of Hanford Subsurface Air Flow and Extraction (SAFE) Activities for Fiscal Year 2002

Potential leak detection, monitoring, and mitigation techniques are being developed to support Hanford single-shell tank waste retrieval operations. In July and August 2001, Pacific Northwest National Laboratory demonstrated several of these technologies for CH2M HILL Hanford Group, Inc., at the Mock Tank Site in the 200 East Area. These subsurface air flow and extraction (SAFE) technologies use air injection and extraction wells to create an advective air flowfield beneath a tank. SAFE includes the following technologies: 1) leak detection--in-tank tracers, flowfield disturbance, radon displacement, and tank waste vapors; 2) leak monitoring--partitioning tracer method and reactive tracers; 3) leak mitigation--soil desiccation before and after leakage and in situ gaseous reduction; and 4) subsurface characterization--interfacial tracers. This report provides an overview of these technologies and discusses the FY 2001 demonstration activities at the Mock Tank Site, their results, and implications for future work.
Date: March 20, 2002
Creator: Cameron, Richard J.; Evans, John C.; Johnson, Michael D. & Liikala, Terry L.
System: The UNT Digital Library
FY02 CBNP Annual Report: Discovery of DNA Signature of Biothreat Detection Using Suppression Subtractive Hybridization (open access)

FY02 CBNP Annual Report: Discovery of DNA Signature of Biothreat Detection Using Suppression Subtractive Hybridization

Our goal is to develop robust DNA signatures for rapid and specific DNA-based detection platforms that can be employed by CBNP to detect a wide range of potential agents. Our approach has resulted in highly specific DNA signatures for Yersina pestis, Bacillus anthracis and Brucella species. Furthermore, this approach can be applied to any genome (even uncharacterized ones), which facilitates DNA signature development for detection of newly emerging pathogens. We are using suppression subtractive hybridization (SSH) as a tool to define large DNA regions specific to multiple biothreat pathogens by comparing them to genomes of the most closely related organisms. This approach has become increasingly accurate as we continue to find new, distinctive strains and ever-closer near-neighbors. With the huge costs incurred by whole genome sequencing, it is not possible to sequence each new bacterial genome. However, it is completely practical to identify genome differences in the laboratory using SSH, and becomes especially useful when comparing new strains to previously sequenced genomes.
Date: November 19, 2002
Creator: Andersen, G L & Radnedge, L
System: The UNT Digital Library
Design of an Actinide Burning, Lead or Lead-Bismuth Cooled Reactor That Produces Low Cost Electricty - FY-02 Annual Report (open access)

Design of an Actinide Burning, Lead or Lead-Bismuth Cooled Reactor That Produces Low Cost Electricty - FY-02 Annual Report

The purpose of this collaborative Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) Laboratory Directed Research and Development (LDRD) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, plant engineering, material compatibility studies, and coolant activation. The publications derived from work on this project (since project inception) are listed in Appendix A. This is the third in a series of Annual Reports for this project, the others are also listed in Appendix A as FY-00 and FY-01 Annual Reports.
Date: October 1, 2002
Creator: Mac Donald, Philip Elsworth & Buongiorno, Jacopo
System: The UNT Digital Library
LDRD 26573 Ultra-Low Power Spread Spectrum Receiver, FY02 Final Report (open access)

LDRD 26573 Ultra-Low Power Spread Spectrum Receiver, FY02 Final Report

This report describes the development of an ultra-low power spread spectrum receiver based on a programmable surface acoustic wave (SAW) correlator. This work was funded under LDRD 02-26573, Ultra-Low Power Spread Spectrum Receiver. The approach taken in this project uses direct demodulation of a radio frequency (RF) signal from carrier frequency to data frequency. This approach was taken to reduce power consumption and size. The design is based on the technique of correlating the received RF signal with the preprogrammed spreading code. The system requirements, applications, design methodology, and testing results are all documented in the following pages.
Date: October 2002
Creator: Brocato, Robert W.
System: The UNT Digital Library
Idaho National Engineering and Environmental Laboratory institutional plan -- FY 2000--2004 (open access)

Idaho National Engineering and Environmental Laboratory institutional plan -- FY 2000--2004

In this first institutional plan prepared by Bechtel BWXT Idaho, LLC, for the Idaho National Engineering and Environmental Laboratory, the INEEL will focus its efforts on three strategic thrusts: (1) Environmental Management stewardship for DOE-EM, (2) Nuclear reactor technology for DOE-Nuclear Energy (NE), and (3) Energy R and D, demonstration, and deployment (initial focus on biofuels and chemicals from biomass). The first strategic thrust focuses on meeting DOE-EMs environmental cleanup and long-term stewardship needs in a manner that is safe, cost-effective, science-based, and approved by key stakeholders. The science base at the INEEL will be further used to address a grand challenge for the INEEL and the DOE complex--the development of a fundamental scientific understanding of the migration of subsurface contaminants. The second strategic thrust is directed at DOE-NEs needs for safe, economical, waste-minimized, and proliferation-resistant nuclear technologies. As NE lead laboratories, the INEEL and ANL will pursue specific priorities. The third strategic thrust focuses on DOE's needs for clean, efficient, and renewable energy technology. As an initial effort, the INEEL will enhance its capability in biofuels, bioprocessing, and biochemicals. The content of this institutional plan is designed to meet basic DOE requirements for content and structure and reflect the …
Date: December 1, 1999
Creator: Enge, R.S.
System: The UNT Digital Library
Institutional Plan Argonne National Laboratory FY 2000--FY 2005 [October 1999] (open access)

Institutional Plan Argonne National Laboratory FY 2000--FY 2005 [October 1999]

This Institutional Plan describes what Argonne management regards as the optimal future development of Laboratory activities. The document outlines the development of both research programs and support operations in the context of the nation's R and D priorities, the missions of the Department of Energy (DOE) and Argonne, and expected resource constraints. The product of many discussions between DOE and Argonne program managers, the Draft Institutional Plan is provided to the Department before Argonne's On-Site Review. Issuance of the final Institutional Plan in the fall, after further comment and discussion, marks the culmination of the Laboratory's annual planning cycle. The final Plan also reflects programmatic priorities developed during Argonne's summer strategic planning process and the allocation of Laboratory Directed Research and Development funds.
Date: December 2, 1999
Creator: Beggs, S. D.
System: The UNT Digital Library
Heavy vehicle hybrid propulsion systems R and D program plan, FY 2000-2005 (open access)

Heavy vehicle hybrid propulsion systems R and D program plan, FY 2000-2005

This report contains the program plan and background information for the Heavy Vehicle Hybrid Propulsion R and D Program sponsored by the Department of Energy's Office of Heavy Vehicle Technologies. The program is a collaboration between industry and government established for the development of advanced hybrid-electric propulsion technology for urban cycle trucks and buses. It targets specific applications to enhance potential market success. Potential end-users are also involved.
Date: July 1, 2000
Creator: unknown
System: The UNT Digital Library
Ernest Orlando Lawrence Berkeley National Laboratory Institutional Plan FY 2000-2004 (open access)

Ernest Orlando Lawrence Berkeley National Laboratory Institutional Plan FY 2000-2004

The FY 2000-2004 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab, the Laboratory) mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. To advance the Department of Energy's ongoing efforts to define the Integrated Laboratory System, the Berkeley Lab Institutional Plan reflects the strategic elements of our planning efforts. The Institutional Plan is a management report that supports the Department of Energy's mission and programs and is an element of the Department of Energy's strategic management planning activities, developed through an annual planning process. The Plan supports the Government Performance and Results Act of 1993 and complements the performance-based contract between the Department of Energy and the Regents of the University of California. It identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by Berkeley Lab's scientific and support divisions.
Date: August 1, 1999
Creator: Chartock, Mike (ed.) & Hansen, Todd (ed.)
System: The UNT Digital Library
Pacific Northwest National Laboratory institutional plan FY 1998--2002 (open access)

Pacific Northwest National Laboratory institutional plan FY 1998--2002

Pacific Northwest National Laboratory`s core mission is to deliver environmental science and technology in the service of the nation and humanity. Through basic research the lab creates fundamental knowledge of natural, engineered, and social systems that is the basis for both effective environmental technology and sound public policy. They solve legacy environmental problems by delivering technologies that remedy existing environmental hazards, they address today`s environmental needs with technologies that prevent pollution and minimize waste, and they are laying the technical foundation for tomorrow`s inherently clean energy and industrial processes. The lab also applies their capabilities to meet selected national security, energy, and human health needs; strengthen the US economy; and support the education of future scientists and engineers. The paper summarizes individual research activities under each of these areas.
Date: 1997
Creator: unknown
System: The UNT Digital Library
Thomas Jefferson National Accelerator Facility Institutional Plan FY2000 - FY2004 (open access)

Thomas Jefferson National Accelerator Facility Institutional Plan FY2000 - FY2004

Jefferson Lab contributes to the Department of Energy mission to develop and operate major cutting-edge scientific user facilities. Jefferson Lab's CEBAF (Continuous Electron Beam Accelerator Facility) is a unique tool for exploring the transition between the regime where strongly interacting (nuclear) matter can be understood as bound states of protons and neutrons, and the regime where the underlying fundamental quark-and-gluon structure of matter is evident. The nature of this transition is at the frontier of the authors understanding of matter. Experiments proposed by 834 scientists from 146 institutions in 21 countries await beam time in the three halls. The authors user-customers have been delighted with the quality of the data they are obtaining. Driven by their expressed need for energies higher than the 4 GeV design energy and on the outstanding performance of their novel superconducting accelerator, the laboratory currently delivers beams at 5.5 GeV and expects to deliver energies approaching 6 GeV for experiments in the near future. Building on the success of Jefferson Lab and continuing to deliver value for the nation's investment is the focus of Jefferson Lab's near-term plans. The highest priority for the facility is to execute its approved experimental program to elucidate the quark …
Date: January 1, 2000
Creator: Lab, Jefferson
System: The UNT Digital Library
LDRD 10729 Ultra Miniaturization of RF using Microwave Chip on Flex Technology, FY02 Final Report (open access)

LDRD 10729 Ultra Miniaturization of RF using Microwave Chip on Flex Technology, FY02 Final Report

This report describes the activities on the ''Ultra Miniaturization of RF'' project conducted as part of Sandia's Laboratory Directed Research and Development (LDRD) program. The objective was to evaluate a multichip module technology known as Microwave Chip on Flex (MCOF) [1], which is a newer form of the standard high density interconnect (HDI) technology originally developed by General Electric and Lockheed Martin [2,3]. The program was a three-year effort. In the first year, the team focused on understanding the technology and developing a basic design library. In the second year, devices and interconnects used at L, X, and Ku frequency bands were evaluated via a test coupon (with no application specific circuit design). In the third year, we designed, fabricated, and evaluated a specific Ku-band circuit. The circuit design and layout was performed by Sandia, and the module fabrication was performed by Lockheed Martin Government Electronic Systems. In MCOF technology [1], bare die are placed face down on an adhesive backed flex circuit. The first level of the circuit is a pre-patterned titanium copper thin film metal system on a polyimide dielectric material. The complete module is then framed and filled with an epoxy encapsulant. The module is flipped and …
Date: March 1, 2003
Creator: Sandoval, Charlie E.; Wouters, Greg A. & Sloan, George R.
System: The UNT Digital Library