3 Matching Results

Results open in a new window/tab.

Direct Methane Conversion to Methanol (open access)

Direct Methane Conversion to Methanol

Objective is to demonstrate the effectiveness of a catalytic membrane reactor (ceramic membrane combined with catalyst) to selectively produce methanol by partial oxidation of methane. None of the membranes tested in a high pressure system could selectively remove methanol, until a cooling tube was inserted inside the membrane reactor to quench the product stream; this effectively increased methanol selectivity 2[times] during methane oxidation. For both conditions, combined selectivity for methanol and CO is constant, 85%. The remaining product is CO[sub 2]. The membranes were broken when removed from the system; this was remedied when a cooling tube with a smaller diameter was used.
Date: December 3, 1992
Creator: Falconer, J. L. & Noble, R. D.
System: The UNT Digital Library
Direct Methane Conversion to Methanol. Quarterly Project Status Report, July 1, 1992--September 30, 1992 (open access)

Direct Methane Conversion to Methanol. Quarterly Project Status Report, July 1, 1992--September 30, 1992

Objective is to demonstrate the effectiveness of a catalytic membrane reactor (ceramic membrane combined with catalyst) to selectively produce methanol by partial oxidation of methane. None of the membranes tested in a high pressure system could selectively remove methanol, until a cooling tube was inserted inside the membrane reactor to quench the product stream; this effectively increased methanol selectivity 2{times} during methane oxidation. For both conditions, combined selectivity for methanol and CO is constant, 85%. The remaining product is CO{sub 2}. The membranes were broken when removed from the system; this was remedied when a cooling tube with a smaller diameter was used.
Date: December 3, 1992
Creator: Falconer, J. L. & Noble, R. D.
System: The UNT Digital Library
Geology of carnotite-bearing sandstone in the Uravan and Gateway districts, Montrose and Mesa counties, Colorado, and Grand County, Utah (open access)

Geology of carnotite-bearing sandstone in the Uravan and Gateway districts, Montrose and Mesa counties, Colorado, and Grand County, Utah

This report describes the distribution of geologic features that may be used as geologic guides to carnotite deposits, sedimentary trends of the ore-bearing sandstone, and regional structures within and adjacent to the Urvan mineral belt in the Urvan and Gateway mining districts, Montrose and Mesa Counties, Colorado.
Date: February 3, 1953
Creator: McKay, E. J.
System: The UNT Digital Library