Resource Type

2 Matching Results

Results open in a new window/tab.

Diosmacycloalkanes as models for the formation of hydrocarbons from surface methylenes (open access)

Diosmacycloalkanes as models for the formation of hydrocarbons from surface methylenes

We have obtained a neutron diffraction data set for Os{sub 2}(CO){sub 8}({mu}-C{sub 2}H{sub 4}). While the structure is still being solved, it is already clear that the hybridization at both of the ethylene carbons is sp{sup 3}. Our first interpretation of our liquid crystal NMR results had suggested a very acute H-C-H angle. We have also obtained {sup 13}C liquid crystal data for Os{sub 2}(CO){sub 8}({mu}-C{sub 2}H{sub 4}). Liquid crystal NMR ({sup 13}C as well as {sup 1}H) spectra have been obtained for Os(CO){sub 4}(C{sub 2}H{sub 4}) and its solution structure determined, in order to test our methodology on a molecule with a rigid structure. The normal modes of Os(CO){sub 4}({mu}-C{sub 2}H{sub 4}) and its deuterated and {sup 13}C-labelled isotopomers have been completely assigned. A partial vibrational analysis of Os{sub 2}(CO){sub 8}({mu}-propene), Os{sub 2}(CO){sub 8}(trans-2-butene), and Os{sub 2}(CO){sub 8}(1-butene) has been completed. We have prepared Os(CO){sub 4}({mu}-CH{sub 2}CH{sub 2}CH{sub 2}) and its 3,3-dideuterio analog. In the course of this work the reaction of Na{sub 2}Os(CO){sub 4} with a number of 1,3-propanediol derivatives has been examined. 1,3-Propanediol ditosylate afforded much better yields of the osmacycle than did either the ditriflate or diiodide. 2,2-Dideutero-1,3-propanediol ditosylate was used to prepare the deuterium-labelled osmacyclobutane.
Date: January 1, 1989
Creator: Norton, J.R.
System: The UNT Digital Library
Diosmacycloalkanes as models for the formation of hydrocarbons from surface methylenes. Progress report, April 1, 1988--March 31, 1989 (open access)

Diosmacycloalkanes as models for the formation of hydrocarbons from surface methylenes. Progress report, April 1, 1988--March 31, 1989

We have obtained a neutron diffraction data set for Os{sub 2}(CO){sub 8}({mu}-C{sub 2}H{sub 4}). While the structure is still being solved, it is already clear that the hybridization at both of the ethylene carbons is sp{sup 3}. Our first interpretation of our liquid crystal NMR results had suggested a very acute H-C-H angle. We have also obtained {sup 13}C liquid crystal data for Os{sub 2}(CO){sub 8}({mu}-C{sub 2}H{sub 4}). Liquid crystal NMR ({sup 13}C as well as {sup 1}H) spectra have been obtained for Os(CO){sub 4}(C{sub 2}H{sub 4}) and its solution structure determined, in order to test our methodology on a molecule with a rigid structure. The normal modes of Os(CO){sub 4}({mu}-C{sub 2}H{sub 4}) and its deuterated and {sup 13}C-labelled isotopomers have been completely assigned. A partial vibrational analysis of Os{sub 2}(CO){sub 8}({mu}-propene), Os{sub 2}(CO){sub 8}(trans-2-butene), and Os{sub 2}(CO){sub 8}(1-butene) has been completed. We have prepared Os(CO){sub 4}({mu}-CH{sub 2}CH{sub 2}CH{sub 2}) and its 3,3-dideuterio analog. In the course of this work the reaction of Na{sub 2}Os(CO){sub 4} with a number of 1,3-propanediol derivatives has been examined. 1,3-Propanediol ditosylate afforded much better yields of the osmacycle than did either the ditriflate or diiodide. 2,2-Dideutero-1,3-propanediol ditosylate was used to prepare the deuterium-labelled osmacyclobutane.
Date: January 1, 1989
Creator: Norton, J. R.
System: The UNT Digital Library