Resource Type

Month

Transistorized power switch and base drive circuit therefore (open access)

Transistorized power switch and base drive circuit therefore

A high power switching circuit is disclosed which utilizes a four-terminal Darlington transistor block to improve switching speed, particularly in rapid turn-off. Two independent reverse drive currents are utilized during turn-off in order to expel the minority carriers of the Darlington pair at their own charge sweep-out rate. The reverse drive current may be provided by a current transformer, the secondary of which is tapped to the base terminal of the power stage of the Darlington block. In one application, the switching circuit is used in each power switching element in a chopper-inverter drive of an electric vehicle propulsion system.
Date: March 24, 1981
Creator: Lee, F.C. & Carter, R.A.
System: The UNT Digital Library
Method and apparatus for the formation of a spheromak plasma (open access)

Method and apparatus for the formation of a spheromak plasma

An inductive method and apparatus for forming detached spheromak plasma using a thin-walled metal toroidal ring are described that uses external current leads and internal poloidal and toroidal field coils located inside a vacuum chamber filled with low density hydrogen gas and an external axial field generating coil. The presence of a current in the poloidal field coils, and an externally generated axial field sets up the initial poloidal field configuration in which the field is strongest toward the major axis of the toroid. The internal toroidal-field-generating coil is then pulsed on, ionizing the gas and inducing poloidal current and toroidal magnetic field into the plasma region in the sleeve exterior to and adjacent to the ring and causing the plasma to expand away from the ring and toward the major axis. Next the current in the poloidal field coils in the ring is reversed. This induces toroidal current into the plasma and causes the poloidal magnetic field lines to reconnect. The reconnection continues until substantially all of the plasma is formed in a separated spheromak configuration held in equilibrium by the initial external field.
Date: March 24, 1981
Creator: Jardin, S. C.; Yamada, M.; Furth, H. P. & Okabayashi, M.
System: The UNT Digital Library