Resource Type

Slag capture and removal during laser cutting. [Patent application] (open access)

Slag capture and removal during laser cutting. [Patent application]

Molten metal removed from a workpiece in a laser cutting operation is blown away from the cutting point by a gas jet and collected on an electromagnet. The laser cutting is used to separate the castings of spent fuel rods from the fuel-containing elements therein.
Date: January 28, 1982
Creator: Brown, C.O.
System: The UNT Digital Library
Photosensitivity enhancement of PLZT ceramics by positive-ion implantation (open access)

Photosensitivity enhancement of PLZT ceramics by positive-ion implantation

The photosensitivity of lead lanthanum zirconate titanate (PLZT) ceramic material used in high resolution, high contrast, and nonvolatile photoferroelectric image storage and display devices is enhanced significantly by positive ion implantation of the PLZT near its surface. Implanted ions include H/sup +/, He/sup +/, Ne/sup +/, Ar/sup +/, as well as chemically reactive ions from Fe, Cr, and Al. The positive ion implantation advantageously serves to shift the absorption characteristics of the PLZT material from near-uv light to visible light. As a result, photosensitivity enhancement is such that the positive ion implanted PLZT plate is sensitive even to sunlight and conventional room lighting, such as fluorescent and incandescent light sources. The method disclosed includes exposing the PLZT plate to the positive ions at sufficient density, from 1 x 10/sup 12/ to 1 x 10/sup 17/, and with sufficient energy, from 100 to 500 keV, to provide photosensitivity enhancement. The PLZT material may have a lanthanum content ranging from 5 to 10%, a lead zirconate content of 62 to 70 mole %, and a lead titanate content of 38 to 30%. The ions are implanted at a depth of 0.1 to 2 microns below the surface of the PLZT plate.
Date: January 28, 1982
Creator: Peercy, P.S. & Land, C.E.
System: The UNT Digital Library
Continuous production of ethanol by use of flocculent Zymomonas mobilis (open access)

Continuous production of ethanol by use of flocculent Zymomonas mobilis

Improved means and process for producing ethanol by fermentation are provided. Another object of the invention is to produce ethanol in a continuous-flow process by means of a biological catalyst that can be retained in a continuous-flow reactor vessel without being bonded to or held within a support material. An additional object of the invention is to provide a fermentation reactor vessel wherein disturbance of the desirable plug flow of sugar solution is minimized. These objects are attained by the preferred apparatus and process of the invention which utilize a newly-discovered flocculent strain of Zymomonas mobilis for converting sugar to ethanol in a continuous flow-type reactor vessel. The flow rate of a sugar-containing solution through a column containing the floc-forming strain of Z. mobilis is adjusted so that a sufficient conversion of sugar to ethanol is achieved in the column and the flocculent Z. mobilis is not washed away in effluent from the column. Carbon dioxide gas generated by the fermentation process is vented from a plurality of points spaced along an inclined column in which the process is conducted, thus minimizing disturbance of the plug flow of liquid by this gas.
Date: January 28, 1982
Creator: Arcuri, E. J. & Donaldson, T. L.
System: The UNT Digital Library
Cathode-preparation method for molten-carbonate fuel cell (open access)

Cathode-preparation method for molten-carbonate fuel cell

A method of preparing a porous cathode structure for use in a molten carbonate fuel cell begins by providing a porous integral plaque of sintered nickel oxide particles. The nickel oxide plaque can be obtained by oxidizing a sintered plaque of nickel metal or by compacting and sintering finely divided nickel oxide particles to the desired pore structure. The porous sintered nickel oxide plaque is contacted with a lithium salt for a sufficient time to lithiate the nickel oxide structure and thus enhance its electronic conductivity. The lithiation can be carried out either within an operating fuel cell or prior to assembling the plaque as a cathode within the fuel cell.
Date: January 28, 1982
Creator: Smith, James L.; Sim, James W. & Kucera, Eugenia H.
System: The UNT Digital Library
Spark-Gap Device for Precise Switching (open access)

Spark-Gap Device for Precise Switching

An improved spark gap apparatus is provided for precise switching of high currents from charged capacitors, and for protecting circuitry and circuit components, such as an energy storage capacitor, from overvoltage surges. The invention includes a pair of niobium electrodes with a melting point greater than 2000/sup 0/C that forms the spark gap. The electrodes are supported by conductive caps spaced apart from one another by an insulating member all of which form a hermetically sealed chamber filled with an inert, ionizable gas, preferably pure xenon. The spark gap device includes a quantity of solid radioactive stabilizer, carbon-14, placed within the hermetically sealed chamber adjacent to the spark gap. Methods for fabricating the device and its components are described. It is claimed that use of the Nb electrodes forestalls electrode erosion even under severe voltage and discharge conditions, that, by employing pure Xe gas, and solid carbon-14 radiation stabilizer, it is unnecessary to employ radioactive gases or chemically plated radioactive sources to promote ionization, and that, by selection of a suitable spark gap, a spark gap device is obtained which is capable of switching at 1700 V +- 10% for input voltage rates up to 570 V/ms and allowing peak …
Date: January 28, 1982
Creator: Boettcher, Gordon E.
System: The UNT Digital Library
Cutting fluid for machining fissionable materials (open access)

Cutting fluid for machining fissionable materials

The present invention is directed to a cutting fluid for machining fissionable material. The cutting fluid is formed of glycol, water and a boron compound in an adequate concentration for effective neutron attenuation so as to inhibit criticality incidents during machining.
Date: January 28, 1982
Creator: Duerksen, W.K.; Googin, J.M. & Napier, B. Jr.
System: The UNT Digital Library
Portable battery-free charger for radiation dosimeters (open access)

Portable battery-free charger for radiation dosimeters

This invention is a novel portable charger for dosimeters of the electrometer type. The charger does not require batteries or piezoelectric crystals and is of rugged construction. In a preferred embodiment, the charge includes a housing which carries means for mounting a dosimeter to be charged. The housing also includes contact means for impressing a charging voltage across the mounted dosimeter. Also, the housing carries a trigger for operating a charging system mounted in the housing. The charging system includes a magnetic loop including a permanent magnet for establishing a magnetic field through the loop. A segment of the loop is coupled to the trigger for movement thereby to positions opening and closing the loop. A coil inductively coupled with the loop generates coil-generated voltage pulses when the trigger is operated to open and close the loop. The charging system includes an electrical circuit for impressing voltage pulses from the coil across a capacitor for integrating the pulses and applying the resulting integrated voltage across the above-mentioned contact means for charging the dosimeter.
Date: January 28, 1982
Creator: Manning, F.W.
System: The UNT Digital Library
Cutting assembly (open access)

Cutting assembly

A cutting apparatus includes a support table mounted for movement toward and away from a workpiece and carrying a mirror which directs a cutting laser beam onto the workpiece. A carrier is rotatably and pivotally mounted on the support table between the mirror and workpiece and supports a conduit discharging gas toward the point of impingement of the laser beam on the workpiece. Means are provided for rotating the carrier relative to the support table to place the gas discharging conduit in the proper positions for cuts made in different directions on the workpiece.
Date: January 28, 1982
Creator: Packi, D. J.; Swenson, C. E.; Bencloski, W. A. & Wineman, A. L.
System: The UNT Digital Library
Process for photosynthetically splitting water (open access)

Process for photosynthetically splitting water

In one form of the invention, hydrogen is produced by providing a reactor containing a body of water. The water contains photolytic material, i.e., photoactive material containing a hydrogen-catalyst. The interior of the reactor is isolated from atmosphere and includes a volume for receiving gases evolved from the body of water. The photolytic material is exposed to light to effect photosynthetic splitting of the water into gaseous hydrogen and oxygen. The gas-receiving volume is continuously evacuated by pumping to promote evolution of gaseous hydrogen and oxygen into that volume and to withdraw them therefrom. In another form of the invention, separation of the hydrogen and oxygen is effected by selectively diffusing the hydrogen through a heated semipermeable membrane in a separation zone while maintaining across the zone a magnetic field gradient biasing the oxygen away from the membrane. In a third form of the invention, the withdrawn gas is contacted with a membrane blocking flow of water vapor to the region for effecting recovery of the hydrogen. In a fourth embodiment, the invention comprises a process for selectively recovering hydrogen from a gas mixture comprising hydrogen and oxygen. The process is conducted in a separation zone and comprises contacting the …
Date: January 28, 1982
Creator: Greenbaum, E.
System: The UNT Digital Library