Degree Discipline

Degree Level

A study of the interfacial chemistry of pyrite and coal in fine coal cleaning using flotation (open access)

A study of the interfacial chemistry of pyrite and coal in fine coal cleaning using flotation

Surface oxidation, surface charge, and flotation properties have been systematically studied for coal, coal-pyrite and ore-pyrite. Electrochemical studies show that coal-pyrite exhibits much higher and more complex surface oxidation than ore-pyrite and its oxidation rate depends strongly on the carbon/coal content. Flotation studies indicate that pyrites have no self-induced floatability. Fuel oil significantly improves the floatability of coal and induces considerable flotation for coal-pyrite due to the hydrophobic interaction of fuel oil with the carbon/coal inclusions on the pyrite surface. Xanthate is a good collector for ore-pyrite but a poor collector for coal and coal-pyrite. The results from thermodynamic calculations, flotation and zeta potential measurements show that iron ions greatly affect the flotation of pyrite with xanthate and fuel oil. Various organic and inorganic chemicals have been examined for depressing coal-pyrite. It was found, for the first time, that sodium pyrophosphate is an effective depressant for coal-pyrite. Solution chemistry shows that pyrophosphate reacts with iron ions to form stable iron pyrophosphate complexes. Using pyrophosphate, the complete separation of pyrite from coal can be realized over a wide pH range at relatively low dosage.
Date: December 31, 1993
Creator: Jiang, C.
System: The UNT Digital Library
Bayesian based design of real-time sensor systems for high-risk indoor contaminants (open access)

Bayesian based design of real-time sensor systems for high-risk indoor contaminants

The sudden release of toxic contaminants that reach indoor spaces can be hazardousto building occupants. To respond effectively, the contaminant release must be quicklydetected and characterized to determine unobserved parameters, such as release locationand strength. Characterizing the release requires solving an inverse problem. Designinga robust real-time sensor system that solves the inverse problem is challenging becausethe fate and transport of contaminants is complex, sensor information is limited andimperfect, and real-time estimation is computationally constrained.This dissertation uses a system-level approach, based on a Bayes Monte Carloframework, to develop sensor-system design concepts and methods. I describe threeinvestigations that explore complex relationships among sensors, network architecture,interpretation algorithms, and system performance. The investigations use data obtainedfrom tracer gas experiments conducted in a real building. The influence of individual sensor characteristics on the sensor-system performance for binary-type contaminant sensors is analyzed. Performance tradeoffs among sensor accuracy, threshold level and response time are identified; these attributes could not be inferred without a system-level analysis. For example, more accurate but slower sensors are found to outperform less accurate but faster sensors. Secondly, I investigate how the sensor-system performance can be understood in terms of contaminant transport processes and the model representation that is used to solve the …
Date: December 1, 2007
Creator: Sreedharan, Priya
System: The UNT Digital Library
Growth, life history, and species interactions of bluegill sunfish (Lepomis macrochirus) under heavy predation (open access)

Growth, life history, and species interactions of bluegill sunfish (Lepomis macrochirus) under heavy predation

The purpose of this study was, first, to compare growth and life history characteristics of an unfished population of bluegill sunfish (Lepomis macrochirus) in the presence of an abundant predator population to characteristic exhibited by bluegills in typical southeastern US reservoirs where the abundance of predators is reduced, but fishing is increased. The second objective was to determine if differences observed between populations were determined genetically or environmentally.
Date: December 31, 1992
Creator: Belk, M. C.
System: The UNT Digital Library
Application of seismic tomographic techniques in the investigation of geothermal systems (open access)

Application of seismic tomographic techniques in the investigation of geothermal systems

The utility of microearthquake data for characterizing the Northwest Geysers geothermal field and the Long Valley Caldera (LVC) was investigated. Three-dimensional (3-D) P- and S-wave seismic velocity models were estimated for the Coldwater Creek Steam Field (CCSF) in the Northwest Geysers region. Hypocenters relocated using these 3-D models appear to be associated with the steam producing zone, with a deeper cluster of hypocenters beneath an active injection well. Spatial and temporal patterns of seismicity exhibit strong correlation with geothermal exploitation. A 3-D differential attenuation model was also developed for the CCSF from spectral ratios corrected for strong site effects. High-velocity anomalies and low attenuation in the near surface correspond to Franciscan metagraywacke and greenstone units. Microearthquakes recorded at seismographic stations located near the metagraywacke unit exhibit high corner frequencies. Low-velocity anomalies and higher attenuation in the near surface are associated with sections of Franciscan melange. Near-surface high attenuation and high Vp/Vs are interpreted to indicate liquid-saturated regions affected by meteoric recharge. High attenuation and low Vp/Vs marks the steam producing zone, suggesting undersaturation of the reservoir rocks. The extent of the high attenuation and low Vp/Vs anomalies suggest that the CCSF steam reservoir may extend northwestward beyond the known producing …
Date: May 1, 1995
Creator: Romero, A. E., Jr.
System: The UNT Digital Library
Field investigation of keyblock stability (open access)

Field investigation of keyblock stability

Discontinuities in a rock mass can intersect an excavation surface to form discrete blocks (keyblocks) which can be unstable. This engineering problem is divided into two parts: block identification, and evaluation of block stability. One stable keyblock and thirteen fallen keyblocks were observed in field investigations at the Nevada Test Site. Nine blocks were measured in detail sufficient to allow back-analysis of their stability. Measurements included block geometry, and discontinuity roughness and compressive strength. Back-analysis correctly predicted stability or failure in all but two cases. These two exceptions involved situations that violated the stress assumptions of the stability calculations. Keyblock faces correlated well with known joint set orientations. The effect of tunnel orientation on keyblock frequency was apparent. Back-analysis of physical models successfully predicted block pullout force for two-dimensional models of unit thickness. Two-dimensional (2D) and three-dimensional (3D) analytic models for the stability of simple pyramidal keyblocks were examined. Calculated stability is greater for 3D analyses than for 2D analyses. Calculated keyblock stability increases with larger in situ stress magnitudes, larger lateral stress ratios, and larger shear strengths. Discontinuity stiffness controls block displacement more strongly than it does stability itself. Large keyblocks are less stable than small ones, and stability …
Date: April 1, 1985
Creator: Yow, J. L., Jr.
System: The UNT Digital Library
Application of Soft X-Ray Appearance Potential Spectroscopy to Light Lanthanides, 4d Transition Metals, and Insulators (open access)

Application of Soft X-Ray Appearance Potential Spectroscopy to Light Lanthanides, 4d Transition Metals, and Insulators

Evaporated films of La, Ce, Yb, Y, Ag--Mn(5 percent), KCl, MnF$sub 2$, CsCl and LaF$sub 3$ were studied using the soft x-ray appearance potential spectroscopy (SXAPS) technique. Studies were also made of bulk polycrystalline samples of Y, Zr, Nb, and Mo. The results are discussed in terms of existing SXAPS theories. Several similarities between soft x-ray absorption (SXA) data and the SXAPS results are discussed, and it is shown that the SXA data can aid in the interpretation of SXAPS spectra when using the well-known self-convolution model. In this approximation the absorption coefficient, $alpha$(E), is substituted for the density of states, N(E-E/sub c/) $Yields$ $alpha$(E). For more localized excitations, a convolution of $alpha$(E) with bremsstrahlung isochromat data, based on Wendin's two density of states formalism is used to predict SNAPS results. (auth)
Date: October 1, 1975
Creator: Smith, R. J.
System: The UNT Digital Library