Microfabrication of an Implantable silicone Microelectrode array for an epiretinal prosthesis (open access)

Microfabrication of an Implantable silicone Microelectrode array for an epiretinal prosthesis

Millions of people suffering from diseases such as retinitis pigmentosa and macular degeneration are legally blind due to the loss of photoreceptor function. Fortunately a large percentage of the neural cells connected to the photoreceptors remain viable, and electrical stimulation of these cells has been shown to result in visual perception. These findings have generated worldwide efforts to develop a retinal prosthesis device, with the hope of restoring vision. Advances in microfabrication, integrated circuits, and wireless technologies provide the means to reach this challenging goal. This dissertation describes the development of innovative silicone-based microfabrication techniques for producing an implantable microelectrode array. The microelectrode array is a component of an epiretinal prosthesis being developed by a multi-laboratory consortium. This array will serve as the interface between an electronic imaging system and the human eye, directly stimulating retinal neurons via thin film conducting traces. Because the array is intended as a long-term implant, vital biological and physical design requirements must be met. A retinal implant poses difficult engineering challenges due to the size of the intraocular cavity and the delicate retina. Not only does it have to be biocompatible in terms of cytotoxicity and degradation, but it also has to be structurally …
Date: June 10, 2003
Creator: Maghribi, M
System: The UNT Digital Library
Microphysical Properties of Single and Mixed-Phase Arctic Clouds Derived from AERI Observations (open access)

Microphysical Properties of Single and Mixed-Phase Arctic Clouds Derived from AERI Observations

A novel new approach to retrieve cloud microphysical properties from mixed-phase clouds is presented. This algorithm retrieves cloud optical depth, ice fraction, and the effective size of the water and ice particles from ground-based, high-resolution infrared radiance observations. The theoretical basis is that the absorption coefficient of ice is stronger than that of liquid water from 10-13 mm, whereas liquid water is more absorbing than ice from 16-25 um. However, due to strong absorption in the rotational water vapor absorption band, the 16-25 um spectral region becomes opaque for significant water vapor burdens (i.e., for precipitable water vapor amounts over approximately 1 cm). The Arctic is characterized by its dry and cold atmosphere, as well as a preponderance of mixed-phase clouds, and thus this approach is applicable to Arctic clouds. Since this approach uses infrared observations, cloud properties are retrieved at night and during the long polar wintertime period. The analysis of the cloud properties retrieved during a 7 month period during the Surface Heat Budget of the Arctic (SHEBA) experiment demonstrates many interesting features. These results show a dependence of the optical depth on cloud phase, differences in the mode radius of the water droplets in liquid-only and mid-phase …
Date: June 1, 2003
Creator: Turner, David D.
System: The UNT Digital Library
Fabrication of Yttria stabilized zirconia thin films on poroussubstrates for fuel cell applications (open access)

Fabrication of Yttria stabilized zirconia thin films on poroussubstrates for fuel cell applications

A process for the deposition of yttria stabilized zirconia (YSZ) films, on porous substrates, has been developed. These films have possible applications as electrolyte membranes in fuel cells. The films were deposited from colloidal suspensions through the vacuum infiltration technique. Films were deposited on both fully sintered and partially sintered substrates. A critical cracking thickness for the films was identified and strategies are presented to overcome this barrier. Green film density was also examined, and a method for improving green density by changing suspension pH and surfactant was developed. A dependence of film density on film thickness was observed, and materials interactions are suggested as a possible cause. Non-shorted YSZ films were obtained on co-fired substrates, and a cathode supported solid oxide fuel cell was constructed and characterized.
Date: June 16, 2003
Creator: Leming, Andres
System: The UNT Digital Library
Adsorbate structures and catalytic reactions studied in the torrpressure range by scanning tunneling microscopy (open access)

Adsorbate structures and catalytic reactions studied in the torrpressure range by scanning tunneling microscopy

High-pressure, high-temperature scanning tunneling microscopy (HPHTSTM) was used to study adsorbate structures and reactions on single crystal model catalytic systems. Studies of the automobile catalytic converter reaction [CO + NO {yields} 1/2 N{sub 2} + CO{sub 2}] on Rh(111) and ethylene hydrogenation [C{sub 2}H{sub 4} + H{sub 2} {yields} C{sub 2}H{sub 6}] on Rh(111) and Pt(111) elucidated information on adsorbate structures in equilibrium with high-pressure gas and the relationship of atomic and molecular mobility to chemistry. STM studies of NO on Rh(111) showed that adsorbed NO forms two high-pressure structures, with the phase transformation from the (2 x 2) structure to the (3 x 3) structure occurring at 0.03 Torr. The (3 x 3) structure only exists when the surface is in equilibrium with the gas phase. The heat of adsorption of this new structure was determined by measuring the pressures and temperatures at which both (2 x 2) and (3 x 3) structures coexisted. The energy barrier between the two structures was calculated by observing the time necessary for the phase transformation to take place. High-pressure STM studies of the coadsorption of CO and NO on Rh(111) showed that CO and NO form a mixed (2 x 2) structure …
Date: May 23, 2003
Creator: Hwang, Kevin Shao-Lin
System: The UNT Digital Library
Delta Electroproduction in 12-C (open access)

Delta Electroproduction in 12-C

The Delta-nucleus potential is a crucial element in the understanding of the nuclear system. Previous electroexcitation measurements in the delta region reported a Q2 dependence of the delta mass indicating that this potential is dependent on the momentum of the delta. Such a dependence is not observed for protons and neutrons in the nuclear medium. This thesis presents the experimental study of the electroexcitation of the delta resonance in 12C, performed using the high energy electron beam at the Thomas Jefferson National Accelerator Facility, and the near 4(pie) acceptance detector CLAS that enables the detection of the full reaction final state. Inclusive, semi inclusive, and exclusive cross sections were measured with an incident electron beam energy of 1.162GeV over the Q2 range 0.175-0.475 (GeV/c)2. A Q2 dependence of the delta mass was only observed in the exclusive measurements indicating that the delta-nucleus potential is affected by the momentum of the delta.
Date: January 31, 2003
Creator: McLauchlan, Steven
System: The UNT Digital Library
Measurement of the Lambda 0(b) -> Lambda +(c) pi- branching ratio (open access)

Measurement of the Lambda 0(b) -> Lambda +(c) pi- branching ratio

The authors present a measurement of the {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}{sup +} {pi}{sup -} branching ratio in p{bar p} collisions at {radical}s = 1.96 TeV using 65 pb{sup -1} data collected by the Collider Detector at Fermilab (CDF). The measurement starts from reconstructing two decay modes: {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}, where {Lambda}{sub c}{sup +} {yields} p K{sup -} {pi}{sup +}; and {bar B}{sup 0} {yields} D{sup +}{pi}{sup -}, where D{sup +} {yields} {pi}{sup +} K{sup -} {pi}{sup +}. The authors obtained 96 {+-} 13 {Lambda}{sub b}{sup 0} and 321 {+-} 22 {bar B}{sup 0} candidates from the CDF Run II Two-Track Hadronic Trigger data sample. The relative branching ratio of the two decays is then measured based on the equation: f{sub {Lambda}{sub b}} BR({Lambda}{sub b} {yields} {Lambda}{sub c}{sup +} {pi}{sup -})/f{sub d} BR({bar B}{sup 0} {yields} D{sup +} {pi}{sup -}) = BR(D{sup +} {yields} K{pi}{pi}) N{sub {Lambda}{sub b}} {epsilon}{sub B{sup 0}}/BR({Lambda}{sub c}{sup +} {yields} pK{pi}) N{sub {bar B}{sup 0}} {epsilon}{sub {Lambda}{sub b}}. The measurement gives f{sub {Lambda}{sub b}} BR({Lambda}{sub b} {yields} {Lambda}{sub c}{sup +}{pi}{sup -})/f{sub d} BR({bar B}{sup 0} {yields} D{sup +}{pi}{sup -}) = 0.66 {+-} 0.11(stat) {+-} 0.09(syst) {+-} 0.18(BR). The {Lambda}{sub b}{sup …
Date: January 1, 2003
Creator: Le, Yi
System: The UNT Digital Library
A measurement of forward-backward charge asymmetry of electron-positron pairs in proton-antiproton collision at 1.8 TeV (open access)

A measurement of forward-backward charge asymmetry of electron-positron pairs in proton-antiproton collision at 1.8 TeV

The authors present a measurement of the mass dependence of the forward-backward charge asymmetry for e{sup +}e{sup -} pairs resulting from {gamma}*/Z decays with mass M{sub ee} > 40 GeV/c{sup 2}. The Run II data sample consists of 72 pb{sup -1} of data, which was collected by the CDF detector in {bar p}p collisions at {radical}s = 1.96 TeV at the Fermilab Tevatron. The measurement is compared with predictions from the Standard Model.
Date: December 1, 2003
Creator: Veramendi, Gregory Francisco
System: The UNT Digital Library
MINOS Calibration and NA49 Hadronic Production Studies (open access)

MINOS Calibration and NA49 Hadronic Production Studies

An overview of the current status of the Main Injector Neutrino Oscillation Search (MINOS) is presented. MINOS is a long-baseline experiment with two detectors situated in North America. The near detector is based at the emission point of the NuMI beam at Fermilab, Chicago, the far detector is 735 km downstream in a disused iron mine in Soudan, Minnesota. A third detector, the calibration detector, is used to cross-calibrate these detectors by sampling different particle beams at CERN. A detailed description of the design and construction of the light-injection calibration system is included. Also presented are experimental investigations into proton-carbon collisions at 158 GeV/c carried out with the NA49 experiment at CERN. The NA49 experiment is a Time Projection Chamber (TPC) based experiment situated at CERN's North Area. It is a well established experiment with well known characteristics. The data gained from this investigation are to be used to parameterize various hadronic production processes in accelerator and atmospheric neutrino production. These hadronic production parameters will be used to improve the neutrino generation models used in calculating the neutrino oscillation parameters in MINOS.
Date: August 1, 2003
Creator: Morse, Robert James
System: The UNT Digital Library
Protein Structure Recognition: From Eigenvector Analysis to Structural Threading Method (open access)

Protein Structure Recognition: From Eigenvector Analysis to Structural Threading Method

In this work, they try to understand the protein folding problem using pair-wise hydrophobic interaction as the dominant interaction for the protein folding process. They found a strong correlation between amino acid sequences and the corresponding native structure of the protein. Some applications of this correlation were discussed in this dissertation include the domain partition and a new structural threading method as well as the performance of this method in the CASP5 competition. In the first part, they give a brief introduction to the protein folding problem. Some essential knowledge and progress from other research groups was discussed. This part includes discussions of interactions among amino acids residues, lattice HP model, and the design ability principle. In the second part, they try to establish the correlation between amino acid sequence and the corresponding native structure of the protein. This correlation was observed in the eigenvector study of protein contact matrix. They believe the correlation is universal, thus it can be used in automatic partition of protein structures into folding domains. In the third part, they discuss a threading method based on the correlation between amino acid sequences and ominant eigenvector of the structure contact-matrix. A mathematically straightforward iteration scheme provides …
Date: December 12, 2003
Creator: Cao, Haibo
System: The UNT Digital Library
Anisotropy in CdSe quantum rods (open access)

Anisotropy in CdSe quantum rods

The size-dependent optical and electronic properties of semiconductor nanocrystals have drawn much attention in the past decade, and have been very well understood for spherical ones. The advent of the synthetic methods to make rod-like CdSe nanocrystals with wurtzite structure has offered us a new opportunity to study their properties as functions of their shape. This dissertation includes three main parts: synthesis of CdSe nanorods with tightly controlled widths and lengths, their optical and dielectric properties, and their large-scale assembly, all of which are either directly or indirectly caused by the uniaxial crystallographic structure of wurtzite CdSe. The hexagonal wurtzite structure is believed to be the primary reason for the growth of CdSe nanorods. It represents itself in the kinetic stabilization of the rod-like particles over the spherical ones in the presence of phosphonic acids. By varying the composition of the surfactant mixture used for synthesis we have achieved tight control of the widths and lengths of the nanorods. The synthesis of monodisperse CdSe nanorods enables us to systematically study their size-dependent properties. For example, room temperature single particle fluorescence spectroscopy has shown that nanorods emit linearly polarized photoluminescence. Theoretical calculations have shown that it is due to the crossing …
Date: September 1, 2003
Creator: Li, Liang-shi
System: The UNT Digital Library
Nitrogen doped zinc oxide thin film (open access)

Nitrogen doped zinc oxide thin film

To summarize, polycrystalline ZnO thin films were grown by reactive sputtering. Nitrogen was introduced into the films by reactive sputtering in an NO{sub 2} plasma or by N{sup +} implantation. All ZnO films grown show n-type conductivity. In unintentionally doped ZnO films, the n-type conductivities are attributed to Zn{sub i}, a native shallow donor. In NO{sub 2}-grown ZnO films, the n-type conductivity is attributed to (N{sub 2}){sub O}, a shallow double donor. In NO{sub 2}-grown ZnO films, 0.3 atomic % nitrogen was found to exist in the form of N{sub 2}O and N{sub 2}. Upon annealing, N{sub 2}O decomposes into N{sub 2} and O{sub 2}. In furnace-annealed samples N{sub 2} redistributes diffusively and forms gaseous N{sub 2} bubbles in the films. Unintentionally doped ZnO films were grown at different oxygen partial pressures. Zni was found to form even at oxygen-rich condition and led to n-type conductivity. N{sup +} implantation into unintentionally doped ZnO film deteriorates the crystallinity and optical properties and leads to higher electron concentration. The free electrons in the implanted films are attributed to the defects introduced by implantation and formation of (N{sub 2}){sub O} and Zni. Although today there is still no reliable means to produce good …
Date: December 15, 2003
Creator: Li, Sonny X.
System: The UNT Digital Library
Optically Detected Magnetic Resonance and Thermal Activation Spectroscopy Study of Organic Semiconductors (open access)

Optically Detected Magnetic Resonance and Thermal Activation Spectroscopy Study of Organic Semiconductors

Organic electronic materials are a new class of emerging materials. Organic light emitting devices (OLEDs) are the most promising candidates for future flat panel display technologies. The photophysical characterization is the basic research step one must follow to understand this new class of materials and devices. The light emission properties are closely related to the transport properties of these materials. The objective of this dissertation is to probe the relation between transport and photophysical properties of organic semiconductors. The transport characteristics were evaluated by using thermally stimulated current and thermally stimulated luminescence techniques. The photoluminescence detected magnetic resonance and photoluminescence quantum yield studies provide valuable photophysical information on this class of materials. OLEDs are already in the market. However, detailed studies on the degradation mechanisms are still lacking. Since both optically detected magnetic resonance and thermal activation spectroscopy probe long-lived defect-related states in organic semiconductors, the combined study generates new insight on the OLED operation and degradation mechanisms.
Date: December 12, 2003
Creator: Kim, Chang-Hwan
System: The UNT Digital Library
Three-body Forces in Photoreactions on 3He (open access)

Three-body Forces in Photoreactions on 3He

We have measured the three-body photobreakup of {sup 3}He with the tagged photon beam and the CEBAF Large Acceptance Spectrometer in Hall B at the Thomas Jefferson National Accelerator Facility, in the photon energy range between 0.35 GeV and 1.55 GeV. This measurement constitutes a wide-ranging survey of two- and three-body processes in the gamma{sup 3}He {yields} ppn reaction channel, thanks to the high statistics and large kinematic coverage obtained with the CLAS. Total and partially integrated differential cross sections for the full ppn data set and for selected kinematics were extracted and are compared to theoretical predictions of Laget (up to 1.0 GeV). At low photon energies, the calculations are generally in fair agreement with the data. The comparison shows evidence of strong contributions of three-body absorption mechanisms, especially in the star kinematics, a symmetric configuration of the three final-state nucleons. Mostly the effects of two-body absorption mechanisms are se en, as expected, in the pp-pair-breakup kinematics, where the neutron does not participate in the reaction. The quasi-two-body breakup shows angular distributions consistent with preliminary gamma{sup 3}He --> pd results, extracted from our experiment. The ratio of cross sections for the star configuration and for the two-body kinematics, shows …
Date: February 1, 2003
Creator: Niccolai, Silvia
System: The UNT Digital Library
Organogermanium Chemistry: Germacyclobutanes and digermane Additions to Acetylenes (open access)

Organogermanium Chemistry: Germacyclobutanes and digermane Additions to Acetylenes

This dissertation comprises two main research projects. The first project, presented in Chapter 1, involves the synthesis and thermochemistry of germacyclobutanes (germetanes). Four new germetanes (spirodigermetane, diallylgermetane, dichlorogermetane, and germacyclobutane) have been synthesized using a modified di-Grignard synthesis. Diallylgermetane is shown to be a useful starting material for obtaining other germetanes, particularly the parent germetane, germacyclobutane. The gas-phase thermochemistries of spirodigermetane, diallylgermetane and germacyclobutane have been explored via pulsed stirred-flow reactor (SFR) studies, showing remarkable differences in decomposition, depending on the substitution at the germanium atom. The second project investigates the thermochemical, photochemical, and catalytic additions of several digermanes to acetylenes. The first examples of thermo- and photochemical additions of Ge-Ge bonds to C{triple_bond}C are demonstrated. Mechanistic investigations are described and comparisons are made to analogous disilane addition reactions, previously studied in their group.
Date: December 12, 2003
Creator: Chubb, Andrew Michael
System: The UNT Digital Library
Thermal Properties of Starch From New Corn Lines as Impacted by Environment and During Line Development (open access)

Thermal Properties of Starch From New Corn Lines as Impacted by Environment and During Line Development

The objectives of this research were to further characterize exotic by adapted corn inbreds by studying the impact of environment on their starch thermal properties, and investigating the development of starch thermal properties during kernel maturation by using differential scanning calorimetry (DSC). A method to expedite identification of unusual starch thermal traits was investigated by examining five corn kernels at a time, instead of one kernel, which the previous screening methods used. Corn lines with known thermal functions were blended with background starch (control) in ratios of unique starch to control starch, and analyzed by using DSC. Control starch was representative of typical corn starch. The values for each ratio within a mutant type were unique ({alpha} < 0.01) for most DSC measurements. These results supported the five-kernel method for rapidly screening large amounts of corn germplasm to identify unusual starch traits. The effects of 5 growing locations on starch thermal properties from exotic by adapted corn and Corn Belt lines were studied using DSC. The warmest location, Missouri, generally produced starch with greater gelatinization onset temperature (T{sub oG}), narrower range of gelatinization (R{sub G}), and greater enthalpy of gelatinization ({Delta}H{sub G}). The coolest location, Illinois, generally resulted in starch …
Date: December 12, 2003
Creator: Lenihan, Elizabeth M.
System: The UNT Digital Library
Organic Light-Emitting Devices (OLEDS) and Their Optically Detected Magnetic Resonance (ODMR) (open access)

Organic Light-Emitting Devices (OLEDS) and Their Optically Detected Magnetic Resonance (ODMR)

Organic Light-Emitting Devices (OLEDs), both small molecular and polymeric have been studied extensively since the first efficient small molecule OLED was reported by Tang and VanSlyke in 1987. Burroughes' report on conjugated polymer-based OLEDs led to another track in OLED development. These developments have resulted in full color, highly efficient (up to {approx} 20% external efficiency 60 lm/W power efficiency for green emitters), and highly bright (> 140,000 Cd/m{sup 2} DC, {approx}2,000,000 Cd/m{sup 2} AC), stable (>40,000 hr at 5 mA/cm{sup 2}) devices. OLEDs are Lambertian emitters, which intrinsically eliminates the view angle problem of liquid crystal displays (LCDs). Thus OLEDs are beginning to compete with the current dominant LCDs in information display. Numerous companies are now active in this field, including large companies such as Pioneer, Toyota, Estman Kodak, Philipps, DuPont, Samsung, Sony, Toshiba, and Osram, and small companies like Cambridge Display Technology (CDT), Universal Display Corporation (UDC), and eMagin. The first small molecular display for vehicular stereos was introduced in 1998, and polymer OLED displays have begun to appear in commercial products. Although displays are the major application for OLEDs at present, they are also candidates for nest generation solid-state lighting. In this case the light source needs …
Date: December 12, 2003
Creator: Li, Gang
System: The UNT Digital Library
Electromagnetic Wave Propagation in Two-Dimensional Photonic Crystals (open access)

Electromagnetic Wave Propagation in Two-Dimensional Photonic Crystals

In this dissertation, they have undertaken the challenge to understand the unusual propagation properties of the photonic crystal (PC). The photonic crystal is a medium where the dielectric function is periodically modulated. These types of structures are characterized by bands and gaps. In other words, they are characterized by frequency regions where propagation is prohibited (gaps) and regions where propagation is allowed (bands). In this study they focus on two-dimensional photonic crystals, i.e., structures with periodic dielectric patterns on a plane and translational symmetry in the perpendicular direction. They start by studying a two-dimensional photonic crystal system for frequencies inside the band gap. The inclusion of a line defect introduces allowed states in the otherwise prohibited frequency spectrum. The dependence of the defect resonance state on different parameters such as size of the structure, profile of incoming source, etc., is investigated in detail. For this study, they used two popular computational methods in photonic crystal research, the Finite Difference Time Domain method (FDTD) and the Transfer Matrix Method (TMM). The results for the one-dimensional defect system are analyzed, and the two methods, FDTD and TMM, are compared. Then, they shift their attention only to periodic two-dimensional crystals, concentrate on their …
Date: December 12, 2003
Creator: Foteinopoulou, Stavroula
System: The UNT Digital Library
Quantification of Soil Physical Properties by Using X-Ray Computerized Tomography (CT) and Standard Laboratory (STD) Methods (open access)

Quantification of Soil Physical Properties by Using X-Ray Computerized Tomography (CT) and Standard Laboratory (STD) Methods

The implementation of x-ray computerized tomography (CT) on agricultural soils has been used in this research to quantify soil physical properties to be compared with standard laboratory (STD) methods. The overall research objective was to more accurately quantify soil physical properties for long-term management systems. Two field studies were conducted at Iowa State University's Northeast Research and Demonstration Farm near Nashua, IA using two different soil management strategies. The first field study was conducted in 1999 using continuous corn crop rotation for soil under chisel plow with no-till treatments. The second study was conducted in 2001 and on soybean crop rotation for the same soil but under chisel plow and no-till practices with wheel track and no-wheel track compaction treatments induced by a tractor-manure wagon. In addition, saturated hydraulic (K{sub s}) conductivity and the convection-dispersion (CDE) model were also applied using long-term soil management systems only during 2001. The results obtained for the 1999 field study revealed no significant differences between treatments and laboratory methods, but significant differences were found at deeper depths of the soil column for tillage treatments. The results for standard laboratory procedure versus CT method showed significant differences at deeper depths for the chisel plow treatment …
Date: December 12, 2003
Creator: Sanchez, Maria Ambert
System: The UNT Digital Library
Homogeneous Precipitation of Nickel Hydroxide Powders (open access)

Homogeneous Precipitation of Nickel Hydroxide Powders

Precipitation and characterization of nickel hydroxide powders were investigated. A comprehensive precipitation model incorporating the metal ion hydrolysis, complexation and precipitation reactions was developed for the production of the powders with urea precipitation method. Model predictions on Ni{sup 2+} precipitation rate were confirmed with precipitation experiments carried out at 90 C. Experimental data and model predictions were in remarkable agreement. Uncertainty in the solubility product data of nickel hydroxides was found to be the large contributor to the error. There were demonstrable compositional variations across the particle cross-sections and the growth mechanism was determined to be the aggregation of primary crystallites. This implied that there is a change in the intercalate chemistry of the primary crystallites with digestion time. Predicted changes in the concentrations of simple and complex ions in the solution support the proposed mechanism. The comprehensive set of hydrolysis reactions used in the model described above allows the investigation of other systems provided that accurate reaction constants are available. the fact that transition metal ions like Ni{sup 2+} form strong complexes with ammonia presents a challenge in the full recovery of the Ni{sup 2+}. On the other hand, presence of Al{sup 3+} facilitates the complete precipitation of Ni{sup …
Date: December 12, 2003
Creator: Mavis, Bora
System: The UNT Digital Library
Development of Modeling and Simulation for Magnetic Particle Inspection Using Finite Elements (open access)

Development of Modeling and Simulation for Magnetic Particle Inspection Using Finite Elements

Magnetic particle inspection (MPI) is a widely used nondestructive inspection method for aerospace applications essentially limited to experiment-based approaches. The analysis of MPI characteristics that affect sensitivity and reliability contributes not only reductions in inspection design cost and time but also improvement of analysis of experimental data. Magnetic particles are easily attracted toward a high magnetic field gradient. Selection of a magnetic field source, which produces a magnetic field gradient large enough to detect a defect in a test sample or component, is an important factor in magnetic particle inspection. In this work a finite element method (FEM) has been employed for numerical calculation of the MPI simulation technique. The FEM method is known to be suitable for complicated geometries such as defects in samples. This thesis describes the research that is aimed at providing a quantitative scientific basis for magnetic particle inspection. A new FEM solver for MPI simulation has been developed in this research for not only nonlinear reversible permeability materials but also irreversible hysteresis materials that are described by the Jiles-Atherton model. The material is assumed to have isotropic ferromagnetic properties in this research (i.e., the magnetic properties of the material are identical in all directions in …
Date: May 31, 2003
Creator: Lee, Jun-Youl
System: The UNT Digital Library
Mechanistic Study of Oxygen Atom Transfer Catalyzed by Rhenium Compounds (open access)

Mechanistic Study of Oxygen Atom Transfer Catalyzed by Rhenium Compounds

Two ionic and one neutral methyl(oxo)rhenium(V) compounds were synthesized and structurally characterized. They were compared in reactivity towards the ligands triphenylphosphane, pyridines, pyridine N-oxides. Assistance from Broensted bases was found on ligand displacement of ionic rhenium compounds as well as nucleophile assistance on oxidation of all compounds. From the kinetic data, crystal structures, and an analysis of the intermediates, a structural formula of PicH{sup +}3{sup -} and mechanisms of ligand displacement and oxidation were proposed.
Date: August 5, 2003
Creator: Shan, Xiaopeng
System: The UNT Digital Library
Compact D-D/D-T neutron generators and their applications (open access)

Compact D-D/D-T neutron generators and their applications

Neutron generators based on the {sup 2}H(d,n){sup 3}He and {sup 3}H(d,n){sup 4}He fusion reactions are the most commonly available neutron sources. The applications of current commercial neutron generators are often limited by their low neutron yield and their short operational lifetime. A new generation of D-D/D-T fusion-based neutron generators has been designed at Lawrence Berkeley National Laboratory (LBNL) by using high current ion beams hitting on a self-loading target that has a large surface area to dissipate the heat load. This thesis describes the rationale behind the new designs and their potential applications. A survey of other neutron sources is presented to show their advantages and disadvantages compared to the fusion-based neutron generator. A prototype neutron facility was built at LBNL to test these neutron generators. High current ion beams were extracted from an RF-driven ion source to produce neutrons. With an average deuteron beam current of 24 mA and an energy of 100 keV, a neutron yield of >10{sup 9} n/s has been obtained with a D-D coaxial neutron source. Several potential applications were investigated by using computer simulations. The computer code used for simulations and the variance reduction techniques employed were discussed. A study was carried out to …
Date: May 1, 2003
Creator: Lou, Tak Pui
System: The UNT Digital Library
Ultrafast infrared studies of complex ligand rearrangements in solution (open access)

Ultrafast infrared studies of complex ligand rearrangements in solution

The complete description of a chemical reaction in solution depends upon an understanding of the reactive molecule as well as its interactions with the surrounding solvent molecules. Using ultrafast infrared spectroscopy it is possible to observe both the solute-solvent interactions and the rearrangement steps which determine the overall course of a chemical reaction. The topics addressed in these studies focus on reaction mechanisms which require the rearrangement of complex ligands and the spectroscopic techniques necessary for the determination of these mechanisms. Ligand rearrangement is studied by considering two different reaction mechanisms for which the rearrangement of a complex ligand constitutes the most important step of the reaction. The first system concerns the rearrangement of a cyclopentadienyl ring as the response of an organometallic complex to a loss of electron density. This mechanism, commonly referred to as ''ring slip'', is frequently cited to explain reaction mechanisms. However, the ring slipped intermediate is too short-lived to be observed using conventional methods. Using a combination of ultrafast infrared spectroscopy and electronic structure calculations it has been shown that the intermediate exists, but does not form an eighteen-electron intermediate as suggested by traditional molecular orbital models. The second example examines the initial steps of …
Date: Spring 2003
Creator: Payne, Christine K.
System: The UNT Digital Library
Development of high Sensitivity Materials for Applications in Magneto-Mechanical Torque Sensor (open access)

Development of high Sensitivity Materials for Applications in Magneto-Mechanical Torque Sensor

The Matteucci effect, which mainly manifests itself as the change of magnetization of a material with torsional stress, is currently of great technological interest because of the search for magnetic torque sensors. Magnetic torque sensors are important to future improvements of automobiles and industrial robots. It is well known that the magnetic state of a material depends on both the external magnetic field and external stress which causes strain and change in magnetization of the material. The former phenomenon has been well understood in both theory and application. However, the magnetic state dependence of stress is not adequately understood and the experimental data is of limited extent. In this project, the Matteucci effect in iron, cobalt, nickel and permalloy rods has been documented when they were in magnetic remanence status along the axis and nickel ring when they were in remanence status along the circumference. The effect of annealing on the magnetomechanical effect in nickel and the temperature dependence of the magnetomechanical sensitivity has also been examined. Factors related to the sensitivity at equilibrium condition have been theoretically developed. it is found in the experiments that the mechanism of magnetic domain wall movement plays an important role rather than the …
Date: August 5, 2003
Creator: Shen, Yuping
System: The UNT Digital Library