Focus on NIF September 2001 (open access)

Focus on NIF September 2001

As of the end of August, the National Ignition Facility (NIF) is satisfactorily meeting its technical performance, cost and schedule milestones. Hensel Phelps Construction Company (HPCC) turned over the Laser Building to the Beampath Infrastructure System (BIS) Commissioning and Operations team for beneficial occupancy.
Date: September 5, 2001
Creator: Warner, B
System: The UNT Digital Library
Effect of surface structure on catalytic reactions: A sum frequency generation surface vibrational spectroscopy study (open access)

Effect of surface structure on catalytic reactions: A sum frequency generation surface vibrational spectroscopy study

In the results discussed above, it is clear that Sum Frequency Generation (SFG) is a unique tool that allows the detection of vibrational spectra of adsorbed molecules present on single crystal surfaces under catalytic reaction conditions. Not only is it possible to detect active surface intermediates, it is also possible to detect spectator species which are not responsible for the measured turnover rates. By correlating high-pressure SFG spectra under reaction conditions and gas chromatography (GC) kinetic data, it is possible to determine which species are important under reaction intermediates. Because of the flexibility of this technique for studying surface intermediates, it is possible to determine how the structures of single crystal surfaces affect the observed rates of catalytic reactions. As an example of a structure insensitive reaction, ethylene hydrogenation was explored on both Pt(111) and Pt(100). The rates were determined to be essentially the same. It was observed that both ethylidyne and di-{sigma} bonded ethylene were present on the surface under reaction conditions on both crystals, although in different concentrations. This result shows that these two species are not responsible for the measured turnover rate, as it would be expected that one of the two crystals would be more active …
Date: September 7, 2001
Creator: McCrea, Keith R.
System: The UNT Digital Library