Decomposition of chlorinated ethylenes and ethanes in an electron beam generated plasma reactor (open access)

Decomposition of chlorinated ethylenes and ethanes in an electron beam generated plasma reactor

An electron beam generated plasma reactor (EBGPR) is used to determine the plasma chemistry kinetics, energetics and decomposition pathways of six chlorinated ethylenes and ethanes: 1,1,1-trichloroethane, 1,1-dichloroethane, ethyl chloride, trichloroethylene, 1,1-dichloroethylene, and vinyl chloride. A traditional chemical kinetic and chemical engineering analysis of the data from the EBGPR is performed, and the following hypothesis was verified: The specific energy required for chlorinated VOC decomposition in the electron beam generated plasma reactor is determined by the electron attachment coefficient of the VOC and the susceptibility of the molecule to radical attack. The technology was demonstrated at the Hanford Reservation to remove VOCs from soils.
Date: February 1, 1996
Creator: Vitale, S.A.
System: The UNT Digital Library
Development of a high-resolution soft x-ray (30--1500 eV) beamline at the Advanced Light Source and its use for the study of angle-resolved photoemission extended fine structure (open access)

Development of a high-resolution soft x-ray (30--1500 eV) beamline at the Advanced Light Source and its use for the study of angle-resolved photoemission extended fine structure

ALS Bending magnet beamline 9.3.2 is for high resolution spectroscopy, with circularly polarized light. Fixed included-angle SGM uses three gratings for 30--1500 eV photons; circular polarization is produced by an aperture for selecting the beam above or below the horizontal plane. Photocurrent from upper and lower jaws of entrance slit sets a piezoelectric drive feedback loop on the vertically deflecting mirror for stable beam. End station has a movable platform. With photomeission data from Stanford, structure of c(2{times}2)P/Fe(100) was determined using angle-resolved photoemission extended fine structure (ARPEFS). Multiple-scattering spherical-wave (MSSW) calculations indicate that P atoms adsorb in fourfold hollow sites 1.02A above the first Fe layer. Self-consistent-field X{alpha} scattered wave calculation confirm that the Fe{sub 1}-Fe{sub 2} space is contracted for S/Fe but not for P/Fe; comparison is made to atomic N and O on Fe(100). Final-state effects on ARPEFS curves used literature data from the S 1s and 2p core levels of c(2{times}2)S/Ni(001); a generalized Ramsauer-Townsend splitting is present in the 1s but not 2p data. An approximate method for analyzing ARPEFS data from a non-s initial state using only the higher-{ell} partial wave was tested successfully. ARPEFS data from clean surfaces were collected normal to Ni(111) (3p core …
Date: February 1, 1996
Creator: Huff, W. R. A.
System: The UNT Digital Library
Solid phase epitaxial regrowth of (100)GaAs (open access)

Solid phase epitaxial regrowth of (100)GaAs

This thesis showed that low temperature (250 C) SPE of stoichiometrically balanced ion implanted GaAs layers can yield good epitaxial recovery for doses near the amorphization threshold. For 250 C anneals, most of the regrowth occurred in the first 10 min. HRTEM revealed much lower stacking fault density in the co-implanted sample than in the As-only and Ga-only samples with comparable doses. After low temp annealing, the nonstoichiometric samples had a large number of residual defects. For higher dose implants, very high temperatures (700 C) were needed to remove residual defects for all samples. The stoichiometrically balanced layer did not regrow better than the Ga-only and As-only samples. The co-implanted sample exhibited a thinner amorphous layer and a room temperature (RT) annealing effect. The amorphous layer regrew about 5 nm, suggesting that stoichiometrically balanced amorphous layers can regrow even at RT. Mechanisms for solid phase crystallization in (100)GasAs is discussed: nucleation and growth of randomly oriented crystallites and SPE. These two mechanisms compete in compound semiconductors at much lower temperatures than in Si. For the low dose As-only and Ga-only samples with low-temp anneals, both mechanisms are active. For this amorphization threshold dose, crystallites remain in the amorphous layer for …
Date: February 1, 1996
Creator: Almonte, M. I.
System: The UNT Digital Library
Computational modeling of neoclassical and resistive MHD tearing modes in tokamaks (open access)

Computational modeling of neoclassical and resistive MHD tearing modes in tokamaks

Numerical studies of the linear and nonlinear evolution of magnetic tearing type modes in three-dimensional toroidal geometry are presented. In addition to traditional resistive MHD effects, where the parameter {Delta}{prime} determines the stability properties, neoclassical effects have been included for the first time in such models. The inclusion of neoclassical physics introduces and additional free-energy source for the nonlinear formation of magnetic islands through the effects of a bootstrap current in Ohm`s law. The neoclassical tearing mode is demonstrated to be destabilized in plasmas which are otherwise {Delta}{prime} stable, albeit once an island width threshold is exceeded. The simulations are based on a set of neoclassical reduced magnetohydrodynamic (MHD) equations in three-dimensional toroidal geometry derived from the two-fluid equations in the limit of small inverse aspect ratio {epsilon} and low plasma pressure {beta} with neoclassical closures for the viscous force {del} {center_dot} {leftrightarrow}{pi}. The poloidal magnetic flux {psi}, the toroidal vorticity {omega}{sup {zeta}}, and the plasma pressure p are time advanced using the parallel projection of Ohm`s law, the toroidal projection of the curl of the momentum equation, and a pressure evolution equation with anisotropic pressure transport parallel to and across magnetic field lines. The equations are implemented in an …
Date: February 1, 1996
Creator: Gianakon, T.A.
System: The UNT Digital Library
Electronic processes in uniaxially stressed p-type germanium (open access)

Electronic processes in uniaxially stressed p-type germanium

Effect of uniaxial stress on acceptor-related electronic processes in Ge single crystals doped with Ga, Be, and Cu were studied by Hall and photo-Hall effect measurements in conjunction with infrared spectroscopy. Stress dependence of hole lifetime in p-type Ge single crystals is used as a test for competing models of non-radiative capture of holes by acceptors. Photo-Hall effect shows that hole lifetime in Ga- and Be-doped Ge increases by over one order of magnitude with uniaxial stress at liq. He temps. Photo-Hall of Ge:Be shows a stress-induced change in the temperature dependence of hole lifetime. This is consistent with observed increase of responsivity of Ge:Ga detectors with uniaxial stress. Electronic properties of Ge:Cu are shown to change dramatically with uniaxial stress; the results provide a first explanation for the performance of uniaxially stressed, Cu-diffused Ge:Ga detectors which display a high conductivity in absence of photon signal and therefore have poor sensitivity.
Date: February 1, 1996
Creator: Dubon, O.D. Jr.
System: The UNT Digital Library