Studies of fundamental properties of rutherfordium (Element 104) using organic complexing agents (open access)

Studies of fundamental properties of rutherfordium (Element 104) using organic complexing agents

Chemical properties of rutherfordium (Rf) have been investigated with the organic ligands triisooctylamine (TIOA), tributylphosphate (TBP), and thenoyltrifluoroacetone (TTA). The TIOA studies showed that Rf behaves differently than Th and Eu and most similarly to Zr, only Zr and Rf extract from 12 M HCI. This result is further evidence that Rf is a Group 4 element. Studies with TBP showed that Rf chemical behavior differed from the other Group 4 elements. The extraction by TBP at different chloride concentrations showed that Rf at times behaves more like Pu{sup 4+} than Zr or Hf. At high chloride concentrations, Rf and Pu extraction decreased. Under the same conditions, Zr, Hf and Th extraction increased. In addition, Rf extraction by TBP was affected by hydrogen ion concentration, while Zr and Hf extraction was not. TTA extractions were used to determine the K{sub eq}, K{sub hyd}, and the ionic radius of Rf. The of K{sub eq} for Rf with TTA was calculated to be 3.18 {plus minus} 0.90. The first four log K{sub hyd's} for Rf are calculated to be {minus}2.6 {plus minus} 0.7, {minus}5.9 {plus minus} 1.7, {minus}10.2 {plus minus} 2.9, and {minus}14.5 {plus minus} 4.1. These hydrolysis constants indicate that Rf …
Date: April 1, 1992
Creator: Czerwinski, K. R.
System: The UNT Digital Library
Temperature history and microstructure of alumina (open access)

Temperature history and microstructure of alumina

A simple process for the attainment of fully dense and improved microstructure for Al{sub 2}O{sub 3} ceramics has been developed. Pure, narrow size distribution, submicron powder is used. Homogenization heat treatment of Al{sub 2}O{sub 3} powder compacts at 800{degree}C for 50 hours produces more uniform pore structure and higher green strength. Pore size distribution becomes narrower. Near fully dense, fine-grained (< 1.2{mu}m) and uniform grain size-distribution, undoped Al{sub 2}O{sub 3} ceramics can be produced using a high quality powder, a high-pressure cold isostatic forming method, and a two-step sintering technique. Improvements in the microstructure of Al{sub 2}O{sub 3} ceramics homogenized at 800{degree}C/50 h include a smaller pore size and a more uniform pore size distribution. Prevention of differential densification in the early stages and delay of pore channel closure to the later stages of sintering are believed to be the primary mechanisms for the microstructure improvement in two-step sintering. Two-step sintering is an alternate way to improve the microstructure of Al{sub 2}O{sub 3} ceramics compared to fast firing or MgO doping. When a homogenization heat treatment and the fast firing are combined, the final density is higher than from fast firing alone. However, the two-step sintering technique is simple and …
Date: May 1, 1992
Creator: Lin, Jiang Tsair
System: The UNT Digital Library
The processing and potential applications of porous silicon (open access)

The processing and potential applications of porous silicon

Stability of a cylindrical pore under the influence of surface energy is important for porous silicon (PS) processing in the integrated circuit industry. Once the zig-zag cylindrical pores of porous silicon or oxidized porous silicon (OPS) are unstable and breakup into rows of isolated spherical pores, oxidation of PS and densification/nitridation of OPS become difficult. Swing to difficulty transport of reactant gas (O{sub 2}, NH{sub 3}) or the trapped gas (for densification of OPS). A first order analysis of the stability of a cylindrical pore or cylinder is considered first. Growth of small sinusoidal perturbations by viscous flow or evaporation/condensation result in dependence of perturbation growth rate on perturbation wavelength. Rapid thermal oxidation (RTO) of porous silicon is proposed as an alternative for the tedious two-step 300 and 800C oxidation process. Transmission electron microscopy, energy dispersive spectroscopy ESCA are used for quality control. Also, rapid thermal nitridation of oxidized porous silicon in ammonia is proposed to enhance OPS resistance to HF solution. Pores breakup of OPS results in a trapped gas problem during densification. Wet helium is proposed as OPS densification ambient gas to shorten densification time. Finally, PS is proposed to be an extrinsic gettering center in silicon wafers. …
Date: July 1, 1992
Creator: Shieh, Syyuan
System: The UNT Digital Library
An analysis of multiple particle settling for LMR backup shutdown systems (open access)

An analysis of multiple particle settling for LMR backup shutdown systems

Backup shutdown systems proposed for future LMRs may employ discreet absorber particles to provide the negative reactivity insertion. When actuated, these systems release a dense packing of particles from an out-of-core region to settle into an in-core region. The multiple particle settling behavior is analyzed by the method of continuity waves. This method provides predictions of the dynamic response of the system including the average particle velocity and volume fraction of particles vs. time. Although hindered settling problems have been previously analyzed using continuity wave theory, this application represents an extension of the theory to conditions of unrestrained settling. Typical cases are analyzed and numerical results are calculated based on a semi-empirical drift-flux model. For 1/4-inch diameter boron-carbide particles in hot liquid sodium, the unrestrained settling problem assumes a steady-state solution when the average volume fraction of particles is 0.295 and the average particle velocity is 26.0 cm/s.
Date: May 1, 1992
Creator: Brock, R. W.
System: The UNT Digital Library
Development and application of the quasi-potential transformation (open access)

Development and application of the quasi-potential transformation

The quasi-potential transformation, based on the Kirchhoff transformation, reduces the equations governing mass-transfer in a steady-state, nonconvective electrolytic system into two independent parts. The geometry-specific part involves the solution of Laplace`s equation subject to the relevant boundary conditions. The system-specific part involves the solution of a set of coupled first-order, nonlinear, ordinary differential equations. We develop a theoretical basis for the quasi-potential transformation using potential theory. The major assumption on which the quasi-potential transformation is based is that the concentrations can be written as single-valued functions of the electrostatic potential. We see how the system-specific part of the calculation is developed. Boundary conditions are outlined, and the geometry-specific calculations for the disk and hemisphere electrodes are developed. We combine the system-specific calculations for the binary and acidic copper sulfate solutions with these geometry-specific calculations to obtain complete concentration profiles, potential distributions, and current density distributions for these systems. We also investigate the effect of migration on limiting currents.
Date: August 1, 1992
Creator: Pillay, B.
System: The UNT Digital Library
Electronic excited states as a probe of surface adsorbate structure and dynamics in liquid xenon (open access)

Electronic excited states as a probe of surface adsorbate structure and dynamics in liquid xenon

A combination of second harmonic generation (SHG) and a simple dipole-dipole interaction model is presented as a new technique for determining adsorbate geometries on surfaces. The polarization dependence of SHG is used to define possible geometries of the adsorbate about the surface normal. Absorption band shifts using geometry constraints imposed by SHG data are derived for a dimer constructed from two arbitrarily placed monomers on the surface using the dipole-dipole interaction potential. These formulae can be used to determine the orientation of the two monomers relative to each other. A simplified version of this formalism is used to interpret absorption band shifts for rhodamine B adsorbed on fused silica. A brief history of the exciton is given with particular detail to Xe. Data are presented for transient absorption at RT in liquid xenon on the picosecond time scale. These are observations of both tunneling through the barrier that separates the free and trapped exciton states and the subsequent trapping of the exciton. In high densities both of these processes are found to occur within 2 to 6 picoseconds in agreement with theories of Kmiecik and Schreiber and of Martin. A threshold density is observed that separates relaxation via single binary …
Date: August 1, 1992
Creator: Peterson, E. S.
System: The UNT Digital Library
The synthesis and structural characterization of novel transition metal fluorides (open access)

The synthesis and structural characterization of novel transition metal fluorides

High purity KMF{sub 6} and K{sub 2}MF{sub 6} salts (M = Mo,Re, Ru, Os, Ir, Pt) are obtained from reduction hexafluorides. A rhombohedral unit cell is observed for KReF{sub 6}. Fluoride ion capture by Lewis acids from the hexafluorometallate (IV) salts affords high purity tetrafluorides for M = Mo, Re, Ru, Os, and Pd. The structure of RuF{sub 4} is determined from X-ray synchrotron and neutron powder data. Unit cells based on theorthorhombic PdF{sub 4} type cell are derived from X-ray powder data for ReF{sub 4} and OsF{sub 4}. Fluoride ion capture from KAgF{sub 4} provides the thermally unstable trifluoride as a bright, red, diamagnetic solid. The structure solution of AgF{sub 3} and redetermination of the AuF{sub 3} structure from X-ray synchrotron and neutron powder data demonstrate that the two are isostnictural. Thermal decomposition product of AgF{sub 3} is the mixed valence compound Ag{sup II}Ag{sub 2}{sup III}F{sub 8}. Several new salts containing the (Ag - F){sub n}{sup n+} chain cation are prepared. The first linear (Ag - F){sub n}{sup n+} chain is observed in AgF{sup +}BF{sub 4 {sup {minus}}} which crystallizes in a tetragonal unit. AgFAuF{sub 4} has a triclinic unit cell and is isostructural with CuFAuF{sub 4}. AgFAuF{sub 6} …
Date: September 1, 1992
Creator: Casteel, W. J. Jr.
System: The UNT Digital Library
Solid-polymer-electrolyte fuel cells (open access)

Solid-polymer-electrolyte fuel cells

A transport model for polymer electrolytes is presented, based on concentrated solution theory and irreversible thermodynamics. Thermodynamic driving forces are developed, transport properties are identified and experiments devised. Transport number of water in Nafion 117 membrane is determined using a concentration cell. It is 1.4 for a membrane equilibrated with saturated water vapor at 25{degrees}C, decreases slowly as the membrane is dehydrated, and falls sharply toward zero as the water content approaches zero. The relation between transference number, transport number, and electroosmotic drag coefficient is presented, and their relevance to water-management is discussed. A mathematical model of transport in a solid-polymer-electrolyte fuel cell is presented. A two-dimensional membrane-electrode assembly is considered. Water management, thermal management, and utilization of fuel are examined in detail. The membrane separators of these fuel cells require sorbed water to maintain conductivity; therefore it is necessary to manage the water content in membranes to ensure efficient operation. Water and thermal management are interrelated. Rate of heat removal is shown to be a critical parameter in the operation of these fuel cells. Current-voltage curves are presented for operation on air and reformed methanol. Equations for convective diffusion to a rotating disk are solved numerically for a consolute …
Date: July 1, 1992
Creator: Fuller, T. F.
System: The UNT Digital Library
Reaction dynamics and photochemistry of divalent systems (open access)

Reaction dynamics and photochemistry of divalent systems

Results are presented of molecular beam studies of bimolecular and unimolecular reactions of Ba. Chapter 1 discusses the reaction Ba + NO{sub 2}. Formation of the dominant BaO({sup 1}{Sigma}) + NO products resulted primarily from decay of long-lived Ba{sup +}NO{sub 2}{sup {minus}} collision complexes. Secondary mechanisms led to formation of forward scattered, internally excited BaO, and BaNO + O. D{sub o}(Ba-NO) = 65{plus_minus}20 kcal/mol. Reactions of ground state and electronically excited Ba with water and alcohols are examined in Chapter 2. Reaction of Ba({sup 1}S) + H{sup 2}O led to BaO + H{sub 2}, whereas excited state Ba({sup 1}D) + H{sub 2}O reacted to form BaOH + H. Collisions between Ba and CH{sub 3}OH led to BaOCH{sub 3} + H. Radical channels involve H-atom migration and are promoted by excitation of the incident Ba atom. In Chapter 3, reactions of Ba({sup 1}S) with ClO{sub 2}2 and O{sub 3} are discussed. Again, direct and complex mechanisms were observed. Formation of BaCl + O{sub 2} from decomposition of Ba{sup +}ClO{sub 2}{sup {minus}} accounted for 10% of total reaction crass section. Although Ba + O{sub 3} {yields} BaO + 0{sub 2} occurs primarily by direct reaction mechanisms, the secondary channel Ba + 0{sub …
Date: May 1, 1992
Creator: Davis, H. F.
System: The UNT Digital Library
Dip-movement processing for depth-variable velocity (open access)

Dip-movement processing for depth-variable velocity

Dip-moveout correction (DMO) has become commonplace in the seismic processing flow. The goal of DMO processing is to transform the NMO-corrected data to zero-offset, so that the application of zero-offset (poststack) migration is equivalent to full prestack migration of the recorded data. Nearly all DMO implementations assume that the seismic velocity is constant. Usually, this is an acceptable tradeoff because of the tremendous cost savings of DMO and poststack migration versus prestack migration. Where the velocity changes rapidly with depth, however, this constant velocity theory can yield inadequate results. For many areas, such as the Gulf Coast, a velocity function that varies with depth is a reasonable approximation to the true velocity field. Using ray tracing, I find the raypaths from the source and receiver to the reflection point with the given recording time. The time along the corresponding zero-offset ray gives the DMO correction. The relationships between the three rays are expressed by a system of nonlinear equations. By simultaneously solving the equations via Newton-Raphson iteration, I determine the mapping that transforms nonzero-offset data to zero-offset. Unlike previous schemes that approximately handle vertical velocity variation, this method makes no assumptions about the offset, dip, or hyperbolic moveout.
Date: December 1992
Creator: Artley, C. T.
System: The UNT Digital Library
Radiative heat transfer in porous uranium dioxide (open access)

Radiative heat transfer in porous uranium dioxide

Due to low thermal conductivity and high emissivity of UO{sub 2}, it has been suggested that radiative heat transfer may play a significant role in heat transfer through pores of UO{sub 2} fuel. This possibility was computationally investigated and contribution of radiative heat transfer within pores to overall heat transport in porous UO{sub 2} quantified. A repeating unit cell was developed to model approximately a porous UO{sub 2} fuel system, and the heat transfer through unit cells representing a wide variety of fuel conditions was calculated using a finite element computer program. Conduction through solid fuel matrix as wekk as pore gas, and radiative exchange at pore surface was incorporated. A variety of pore compositions were investigated: porosity, pore size, shape and orientation, temperature, and temperature gradient. Calculations were made in which pore surface radiation was both modeled and neglected. The difference between yielding the integral contribution of radiative heat transfer mechanism to overall heat transport. Results indicate that radiative component of heat transfer within pores is small for conditions representative of light water reactor fuel, typically less than 1% of total heat transport. It is much larger, however, for conditions present in liquid metal fast breeder reactor fuel; during …
Date: December 1992
Creator: Hayes, Steven Lowe
System: The UNT Digital Library
Chemistry of radiation damage to wire chambers (open access)

Chemistry of radiation damage to wire chambers

Proportional counters are used to study aspects of radiation damage to wire chambers (wire aging). Principles of low-pressure, rf plasma chemistry are used to predict the plasma chemistry in electron avalanches (1 atm, dc). (1) Aging is studied in CF{sub 4}/iC{sub 4}H{sub 10} gas mixtures. Wire deposits are analyzed by Auger electron spectroscopy. An apparent cathode aging process resulting in loss of gain rather than in a self-sustained current is observed in CF{sub 4}-rich gases. A four-part model considering plasma polymerization of the hydrocarbon, etching of wire deposits by CF{sub 4}, acceleration of deposition processes in strongly etching environments, and reactivity of the wire surface is developed to understand anode wire aging in CF{sub 4}/iC{sub 4}H{sub 10} gases. Practical guidelines suggested by the model are discussed. (2) Data are presented to suggest that trace amounts of Freons do not affect aging rates in either dimethyl ether or Ar/C{sub 2}H{sub 6}. Apparent loss of gain is explained by attachment of primary electrons to a continuously increasing concentration of Freon 11 (CCl{sub 3}F) in the counter gas. An increase in the concentration of Freon 11 in dimethyl ether is caused by a distillation process in the gas supply bottle and is a …
Date: August 1, 1992
Creator: Wise, J.
System: The UNT Digital Library
Surface structure determinations of ordered sulfur overlayers on Mo(100) and Re(0001) by low-energy electron diffraction intensity analysis (open access)

Surface structure determinations of ordered sulfur overlayers on Mo(100) and Re(0001) by low-energy electron diffraction intensity analysis

A newly developed method for surface structure determination, tensor LEED, combined with automated search was used to analyze the structures. The ordered structures of S on Mo(100) which were studied formed a c(2 {times} 2), c(4 {times} 2), and p(2 {times} l) periodicities at coverages of 0.5, 0.75, 1.0 ML (monolayers, of one sulfur atom per one molybdenum atom) respectively. A MO{sub 2}S-like overlayer, which formed at coverages greater than 1.0 ML, is also discussed. Calculations for the c(2 {times} 2) structure gave a best fit geometry with S adsorbed in a four-fold symmetric hollow site and the second layer buckled by 0.09{Angstrom}. The S-Mo bond length is 2.45{Angstrom} and the Pendry R-factor is 0.21. Preliminary calculations for the c(4 {times} 2) structure did not yield an acceptable fit. The three models tried are discussed. Calculations for p(2 {times} l) data did not yield an acceptable geometry either. The types of models that were tried are discussed. Implications of this analysis are discussed along with results of a scanning tunneling microscopy (STM) investigation. The ordered structures on the RE(0001) surface studied have p(2 {times} 2) and (2{radical}3 {times} 2{radical}3)R30{degree} periodicities and occurred at S coverages of 0.25 and 0.5 ML …
Date: November 1, 1992
Creator: Jentz, D. W.
System: The UNT Digital Library
Nucleation and growth in electrodeposition of thin copper films on pyrolytic graphite (open access)

Nucleation and growth in electrodeposition of thin copper films on pyrolytic graphite

Electrodeposition of Cu on graphite electrodes was studied, with emphasis on nucleation. Various ex-situ and in-situ methods were investigated for determining the number density of nuclei. Two direct methods were studied (scanning electron microscopy and scanning tunneling microscopy); indirect determinations included Raman spectroscopy and analysis of potentiostatic current transients. Though some of the techniques correctly predicted the nucleation densities under special conditions, SEM was the most reliable tool. The large scatter in the data necessitated steps to minimize this effect. To electrodeposit Cu on graphite, a nucleation overpotential of 250 mV was measured with cyclic voltammetry; such a large overpotential does not occur on a Pt or on a Cu-covered graphite electrode. The deposition potential is the dominant parameter governing nucleation density. There is a sharp increase in the nucleation density with applied potential. Cu can be deposited on highly oriented pyrolytic graphite only between the nucleation overpotential and the hydrogen evolution potential. To increase the Cu nucleation density, while avoiding excessive H evolution, a double pulse potential technique was used; nucleation densities on the order of 10{sup 10} nuclei/cm{sup 2} were achieved. The use of inhibitors (PVA, benzotriazole) was also investigated. Deposition on conducting polymer electrodes was also studied; …
Date: May 1, 1992
Creator: Kinaci, F. S. & Muller, R. H.
System: The UNT Digital Library
Mechanisms of bacterially catalyzed reductive dehalogenation (open access)

Mechanisms of bacterially catalyzed reductive dehalogenation

Nine bacteria were tested for the ability to dehalogenate tetrachloromethane (CT), tetrachloroethene (PCE), and 1, 1, 1-trichloroethane (TCA) under anaerobic conditions. Three bacteria were able to reductively dehalogenate CT. Dehalogenation ability was not readily linked to a common metabolism or changes in culture redox potential. None of the bacteria tested were able to dehalogenate PCE or TCA. One of the bacteria capable of dehalogenating CT, Shewanella putrefaciens, was chosen as a model organism to study mechanisms of bacterially catalyzed reductive dehalogenation. The effect of a variety of alternate electron acceptors on CT dehalogenation ability by S. putrefaciens was determined. oxygen and nitrogen oxides were inhibitory but Fe (III), trimethylamine oxide, and fumarate were not. A model of the electron transport chain of S. putrefaciens was developed to explain inhibition patterns. A period of microaerobic growth prior to CT exposure increased the ability of S. putrefaciens to dehalogenate CT. A microaerobic growth period also increased cytochrome concentrations. A relationship between cytochrome content and dehalogenation ability was developed from studies in which cytochrome concentrations in S. putrefaciens were manipulated by changing growth conditions. Stoichiometry studies using {sup 14}C-CT suggested that CT was first reduced to form a trichloromethyl radical. Reduction of the …
Date: 1992
Creator: Picardal, Flynn William
System: The UNT Digital Library
A measurement of the forward-backward asymmetry and sin{sup 2}{theta}{sub W} from the process Z{sup 0} {yields} {mu}{sup +}{mu}{sup {minus}} at {radical}s = 1.8 TeV (open access)

A measurement of the forward-backward asymmetry and sin{sup 2}{theta}{sub W} from the process Z{sup 0} {yields} {mu}{sup +}{mu}{sup {minus}} at {radical}s = 1.8 TeV

A measurement of the forward-backward charge asymmetry in the decay of Z{sup o} bosons produced from {bar p}p collisions at {radical}s = 1.8 TeV at the Fermilab Tevatron collider, and decaying to {mu}{sup +} {mu}{sup {minus}} pairs is presented. From this asymmetry, a value for the Weinburg angle, sin{sup 2} {theta}{sub W}, is extracted and compared to values from other experiments.
Date: December 31, 1992
Creator: Markosky, L. A.
System: The UNT Digital Library
Detection of decontamination solution chelating agents using ion selective coated-wire electrodes (open access)

Detection of decontamination solution chelating agents using ion selective coated-wire electrodes

This thesis explores feasibility of using coated-wire electrodes to measure chelating agent concentration. Chelating agents are often found in radioactive decontamination solutions because they aid in the removal of radionuclides from contaminated surfaces by increasing their solubility. However, this characteristic will also enhance the mobility of the radionuclide and thus its transport out of a waste disposal site. Coated-wire ion selective electrodes, based on a polyvinylchloride membrane using dioctylphthalate as a plasticizer and dinonylnaphthalenesulfonic acid as a counterion, were constructed for five commonly utilized chelating agents (ethylenediaminetetracetic acid (EDTA), nitrilotriacetic acid (NTA), citric acid, oxalic acid and tartaric add). The EDTA and NTA electrodes` calibration characteristics exhibited acceptable behavior in pure standard solutions. From data obtained while using the EDTA and NTA electrodes in a cement environment, further research needs to be done in the area of ion interference.
Date: 1992
Creator: Banks, Mark Lavior
System: The UNT Digital Library
Separation of compounds with multiple -OH groups from dilute aqueous solutions via complexation with organoboronate (open access)

Separation of compounds with multiple -OH groups from dilute aqueous solutions via complexation with organoboronate

The complexing extractant agent investigated in this work is 3-nitrophenylboronic acid (NPBA) in its anionic form (NPB). NPBA and Aliquat 336 (quaternary amine) is dissolved in 2-ethyl-l-hexanol, and the extractant is contacted with aq. NaOH. Solutes investigated were 1,2-propanediol, glycerol, fructose, sorbitol and lactic acid. Batch extraction experiments were performed at 25{degree}C. Partition coefficients, distribution ratios and loadings are reported for varying concentrations of solute and NPB. All solutes complexed with NPB{sup {minus}}, with all complexes containing only one NPB{sup {minus}} per complex. The 1:1 complexation constants for the solutes glycerol, fructose and sorbitol follow trends similar to complexation with B(OH){sub 4}{sup {minus}} (aq.), i.e. the complexation constants increase with increasing number of {minus}OH groups available for complexation. Assumption of 1:1 complex is not valid for 1, 2-propanediol, which showed overloading (more than one mole of solute complexed to one mole NPB{sup {minus}}) at higher concentrations. The {minus}OH group on the NPB{sup {minus}} which is left uncomplexed after one solute molecule had bound to the other two {minus}OH groups may be responsible for the overloading. Overloading is also observed in extraction of tactic acid, but through a different mechanism. It was found that TOMA{sup +} can extract lactic acid to …
Date: May 1, 1992
Creator: Chow, Tina Kuo Fung
System: The UNT Digital Library
The fabrication and performance of YBa{sub 2}Cu{sub 3}O{sub 7-x} SQUID magnetometers (open access)

The fabrication and performance of YBa{sub 2}Cu{sub 3}O{sub 7-x} SQUID magnetometers

To enhance the SQUID`s field sensitivity, it is coupled to a flux transformer, a closed superconducting circuit consisting of a pickup loop, to which a signal is applied, connected in series to an input coil, which is inductively coupled to the SQUID. To fabricate an optimal flux transformer, one must use more than one superconducting thin-film layer, each of which is patterned into narrow strips or wires. Some wires from different layers cross, yet remain electrically isolated, to form crossovers, while in other places there must be superconducting contact between wires from different layers. Together, the superconducting wire, superconducting-superconducting contact and the superconducting crossover constitute a superconducting interconnect or multilayer wiring technology. We discuss the development of an interconnect technology involving the high transition temperature ({Tc}) superconductor YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO). Because of the need for epitaxial growth there are limits on materials for the insulating layer separating the YBCO films in multilayer structures, and on deposition and patterning techniques. We discuss the use of pulsed laser deposition in conjunction with patterning by shadow masks and later by photolithography to produce interconnects, multiturn input coils, and flux transformers. We also discuss the performance of SQUID magnetometers, in which a …
Date: July 1, 1992
Creator: Kingston, J. J.
System: The UNT Digital Library
The effect of low Au concentrations on the properties of eutectic Sn/Pb (open access)

The effect of low Au concentrations on the properties of eutectic Sn/Pb

This study was of the effects moderately low Au concentrations ({le} 10 wt%) have on the mechanical properties and microstructure of an eutectic Sn/Pb alloy. Vibration (60--90 Hz swept sine wave for 30 hours) and thermal cycling (0--110C for 1450 cycles) reliability tests were performed on fine pitch leaded chip carriers using eutectic Sn/Pb solder on PCBs (printed circuit boards) with 0, 5, 10, 20, and 50{mu}in nominal Au thicknesses. Testing was also performed on double shear creep specimens consisting of arrays of regular pitch joints. There was a dramatic increase in the number of joints containing voids with increasing Au concentration, an effect more pronounced in the creep joints than in the reliability joints. These voids tended to coalesce and grow during rework simulation of the reliability joints. AuSn{sub 4} intermetallics present in toe of 4.8 wt% (50 {mu}in) Au vibration joints rotated from initial vertical perpendicular to surface of PCB metallization, solidification positions to roughly horizontal (parallel to plating surface) orientations during rework simulation and during aging of the parts. The AuSn{sub 4} intermetallics in the toe of the 4.8 wt% (50{mu}in) Au reflowed joints also rotated after vibration testing. No joint failures were observed in either vibration …
Date: May 1, 1992
Creator: Kramer, P. A.
System: The UNT Digital Library
The electrical conductivity of sodium polysulfide melts (open access)

The electrical conductivity of sodium polysulfide melts

The sodium polysulfide melt has been described by a macroscopic model. This model considers the melt to be composed of sodium cations, monosulfide anions, and neutral sulfur solvent. The transport equations of concentrated-solution theory are used to derived the governing equations for this binaryelectrolyte melt model. These equations relate measurable transport properties to fundamental transport parameters. The focus of this research is to measure the electrical conductivity of sodium polysulfide melts and calculate one of fundamental transport parameters from the experimental data. The conductance cells used in the conductivity measurements are axisymmetric cylindrical cells with a microelectrode. The electrode effects, including double-layer capacity, charge transfer resistance, and concentration overpotential, were minimized by the use of the alternating current at an adequately high frequency. The high cell constants of the conductance cells not only enhanced the experimental accuracy but also made the electrode effects negligible. The electrical conductivities of sodium polysulfide Na{sub 2}S{sub 4} and Na{sub 2}S{sub 5} were measured as a function of temperature (range: 300 to 360{degree}C). Variations between experiments were only up to 2%. The values of the Arrhenius activation energy derived from the experimental data are about 33 kJ/mol. The fundamental transport parameter which quantifies the interaction …
Date: June 1, 1992
Creator: Wang, Meihui
System: The UNT Digital Library
Measuring q{sub 0} using supernovae at z {approx} 0.3 (open access)

Measuring q{sub 0} using supernovae at z {approx} 0.3

The measurement of q{sub o} is extremely important for understanding the quantity of matter in our universe. The measurement of q{sub o} using supernovae of type Ia as standard candles is appealing because it requires less modeling than other methods using galaxies. The challenge with using supernovae to measure q{sub o} is in finding enough of them. In order to find supernovas, we have constructed a very popular f/1 camera for the 3.9m Anglo-Australian Telescope. The camera uses reducing optics that put a 17 in. {times} 17 in. field on a 1024 {times} 1024 pixel Thomson CCD. Using this system, we image to 23rd magnitude in five minutes. We have developed a software package that uses image subtraction to find supernovae that are approximately magnitude 22.4 or brighter in these images. One field can be processed every 6.6 minutes on a relatively unloaded VAX 6000-6510. We estimate that this system should find one supernova in every 105--139 images (about two nights of observation on the AAT). Throughout the two years of operation, we observed the equivalent of about four nights with seeing better than two arc seconds. Although we found many candidates, we were unable to confirm any supemovae. The …
Date: July 1, 1992
Creator: Newberg, H. J. M.
System: The UNT Digital Library
Coupled two-dimensional edge plasma and neutral gas modeling of tokamak scrape-off-layers (open access)

Coupled two-dimensional edge plasma and neutral gas modeling of tokamak scrape-off-layers

The objective of this study is to devise a detailed description of the tokamak scrape-off-layer (SOL), which includes the best available models of both the plasma and neutral species and the strong coupling between the two in many SOL regimes. A good estimate of both particle flux and heat flux profiles at the limiter/divertor target plates is desired. Peak heat flux is one of the limiting factors in determining the survival probability of plasma-facing-components at high power levels. Plate particle flux affects the neutral flux to the pump, which determines the particle exhaust rate. A technique which couples a two-dimensional (2-D) plasma and a 2-D neutral transport code has been developed (coupled code technique), but this procedure requires large amounts of computer time. Relevant physics has been added to an existing two-neutral-species model which takes the SOL plasma/neutral coupling into account in a simple manner (molecular physics model), and this model is compared with the coupled code technique mentioned above. The molecular physics model is benchmarked against experimental data from a divertor tokamak (DIII-D), and a similar model (single-species model) is benchmarked against data from a pump-limiter tokamak (Tore Supra). The models are then used to examine two key issues: …
Date: August 1, 1992
Creator: Maingi, R.
System: The UNT Digital Library
Measurement of current density fluctuations and ambipolar particle flux due to magnetic fluctuations in MST (open access)

Measurement of current density fluctuations and ambipolar particle flux due to magnetic fluctuations in MST

Studies of magnetic fluctuation induced particle transport on Reversed Field Pinch plasmas were done on the Madison Symmetric Torus. Plasma current density and current density fluctuations were measured using a multi-coil magnetic probes. The low frequency (f<50 kHz) current density fluctuations are consistent with the global resistive tearing instabilities predicted by 3-D MHD simulations. At frequencies above 50 kHz, the magnetic fluctuations were detected to be localized with a radial correlation length of about 1--2 cm. These modes are locally resonant modes since the measured dominant mode number spectra match the local safety factor q. The net charged particle flux induced by magnetic fluctuations was obtained by measuring the correlation term <{tilde j}{sub {parallel}} {tilde B}{sub r}>. The result of zero net charged particle loss was obtained, meaning the flux is ambipolar. The ambipolarity of low frequency global tearing modes is satisfied through the phase relations determined by tearing instabilities. The ambipolarity of high frequency localized modes could be partially explained by the simple model of Waltz based on the radial average of small scale turbulence.
Date: August 1, 1992
Creator: Shen, Weimin
System: The UNT Digital Library