2 Matching Results

Results open in a new window/tab.

Budgets and behaviors of uranium and thorium series isotopes in the Santa Monica Basin off the California Coast (open access)

Budgets and behaviors of uranium and thorium series isotopes in the Santa Monica Basin off the California Coast

Samples from three time-series sediment traps deployed in the Santa Monica Basin off the California coast were analyzed to study the flux and scavenging of uranium and thorium series isotopes. Variations of uranium and thorium series isotopes fluxes in the water column were obtained by integrating these time-series deployment results. Mass and radionuclide fluxes measured from bottom sediment traps compare favorably with fluxed determined from sediment core data. This agreement suggests that the near-bottom sediment traps are capable of collecting settling particles representative of the surface sediment. The phase distributions of {sup 234}Th in the water column were calculated by an inverse method using sediment trap data, which help to study the variations of {sup 234}Th scavenging in the water column. Scavenging and radioactive decay of {sup 234}Th are the two principal processes for balancing {sup 234}Th budget in the water column. The residence times of dissolved and particulate {sup 234}Th were determined by a {sup 234}Th scavenging model.
Date: December 16, 1991
Creator: Yu, Lei
System: The UNT Digital Library
Electroweak phase transitions (open access)

Electroweak phase transitions

An analytic treatment of the one Higgs doublet, electroweak phase transition is given. The phase transition is first order, occurs by the nucleation of thin walled bubbles and completes at a temperature where the order parameter, {l_angle}{phi}{r_angle}{sub T} is significantly smaller than it is when the origin becomes absolutely unstable. The rate of anomalous baryon number violation is an exponentially function of {l_angle}{phi}{r_angle}{sub T}. In very minimal extensions of the standard model it is quite easy to increase {l_angle}{phi}{r_angle}{sub T} so that anomalous baryon number violation is suppressed after completion of the phase transition. Hence baryogenesis at the electroweak phase transition is tenable in minimal of the standard model. In some cases additional phase transitions are possible. For a light Higgs boson, when the top quark mass is sufficiently large, the state where the Higgs field has a vacuum expectation value {l_angle}{phi}{r_angle} = 246 GeV is not the true minimum of the Higgs potential. When this is the case, and when the top quark mass exceeds some critical value, thermal fluctuations in the early universe would have rendered the state {l_angle}{phi}{r_angle} = 246 GeV unstable. The requirement that the state {l_angle}{phi}{r_angle} = 246 GeV is sufficiently long lived constrains the …
Date: September 16, 1991
Creator: Anderson, G. W.
System: The UNT Digital Library