Degree Department

Investigation of the Linear and Nonlinear Optical Properties of InSb (open access)

Investigation of the Linear and Nonlinear Optical Properties of InSb

Highly sensitive magneto-optical techniques have been used to investigate weak linear and nonlinear optical absorption mechanisms in p- and n-type InSb. As a result, new absorption processes involving both impurities and free carriers have been identified and studied in detail. For p-InSb, magneto-optical spectra has been obtained over a wide range of temperatures and photon energies. The spectra obtained at higher sample temperatures are seen to result from combined-resonance transitions of free holes between heavy-and light-hole Landau levels, while bound-hole transitions between ground heavy-hole-like and excited light-hole-like acceptor states are observed at lower temperatures. Analysis of the combined-resonance data along with extensive intra-conduction band and two-photon interband data using a modified Pidgeon and Brown 8X8 energy band model has allowed the determination of a single set of band parameters for InSb that quantitatively describes these different sets of data. In addition, a ground state binding energy of 8.1 meV for Cd acceptors and 42.5 meV for Au acceptors has been extracted from the analysis of the bound-hole spectra. For n-lnSb, photo-Hall techniques have been developed and used to study both resonant impurity and two-photon magneto-absorption (TPMA) processes in detail. As a result, LO-phonon-assisted impurity cyclotron resonance harmonic (LOICRH) transitions from …
Date: December 1984
Creator: Littler, C. L.
System: The UNT Digital Library
Degenerate Four Wave Mixing of Short and Ultrashort Light Pulses (open access)

Degenerate Four Wave Mixing of Short and Ultrashort Light Pulses

This dissertation presents experimental and theoretical studies of transient degenerate four wave mixing (DFWM) in organic dyes. Chapter 1 is an introduction to DFWM. Chapter 2 describes DFWM experiments that were performed in the gain medium of a dye laser. Chapter 3 presents the theory of DFWM of short pulses in three level saturable media. Chapter 4 presents DFWM experiments of femtosecond pulses in the saturable absorber of a passively modelocked ring dye laser. Chapter 5 presents the theory of DFWM of ultrashort pulses in resonant media.
Date: August 1984
Creator: McMichael, Ian C. (Ian Charles)
System: The UNT Digital Library