In-situ Electrochemical Surface Engineering in Additively Manufactured CoCrMo for Enhanced Biocompatibility

Laser-based additive manufacturing is inherently associated with extreme, unprecedented, and rapid thermokinetics which impact the microstructural evolution in a built component. Such a unique, near to non-equilibrium microstructure/phase evolution in laser additively manufactured metallic components impact their properties in engineering application. In light of this, the present work investigates the unique microstructural traits as a result of process induced spatial and temporal variation in thermokinetic parameters in laser directed energy deposited CoCrMo biomedical alloy. The influence of such a unique microstructural evolution in laser directed energy deposited CoCrMo on electrochemical response in physiological media was elucidated and compared with a conventionally manufactured, commercially available CoCrMo component. Furthermore, while investigation of the electrochemical response, such a microstructural evolution in laser directed energy deposited CoCrMo led to in-situ surface modification of the built components in physiological media via selective, non-uniform electrochemical etching. Such in-situ surface modification resulted in enhanced biocompatibility in terms of mammalian cell growth, cell-substrate adhesion, blood compatibility, and antibacterial properties indicating improved osteointegration, compared to a conventionally manufactured, commercially available CoCrMo component.
Date: May 2023
Creator: Mazumder, Sangram
System: The UNT Digital Library
Laser Powder Bed Fusion of H13 Tool Steel: Experiments, Process Optimization and Microstructural Characterization (open access)

Laser Powder Bed Fusion of H13 Tool Steel: Experiments, Process Optimization and Microstructural Characterization

This work focused on laser powder bed fusion (LPBF) of H13 tool steel to examine microstructure and melt pool morphology. Experiments were conducted with varying laser power (P) in the range of 90-180 W and scan speed (v) in the range of 500-1000 mm/s. layer thickness (l) and hatch spacing (h) were kept constant. Volumetric energy density (γ) was calculated using the above process parameters. In order to find a relation between the recorded density and top surface roughness with changing process parameters, set of equations were derived using the non-dimensional analysis. For any chosen values of laser power, scan speed, hatch spacing and layer thickness, these equations help to predict top surface roughness and density of LPBF processed H13 tool steel. To confirm the universal relation for these equations, data of In718 and SS316L processed in LPBF was input which gave a R-square of >94% for top surface roughness and >99% for density. A closed box approach, response surface model, was also used to predict the density and surface roughness which allows only in the parametric range. Material microstructures were examined to identify the melting modes such as keyhole, transition and conduction modes. X-ray diffraction data revealed that there …
Date: May 2023
Creator: Channa Reddy, Sumanth Kumar Reddy
System: The UNT Digital Library

Structures of Multicomponent Silicate and Borosilicate Glasses from Molecular Dynamics Simulations: Effects of Iron Redox Ratio and Cation Field Strength

Multicomponent silicate and borosilicate glasses find wide technological applications ranging from optical fibers, biomedicine to nuclear waste disposal. As a common component of earth's mantle and nuclear waste, iron is a frequent encounter in silicate and borosilicate melts and glasses. The redox ratio in glass matrix defined by the ratio of ferrous and ferric ions is dependent on factors such as temperature, pressure, and oxygen fugacity. Understanding their roles on the short- and medium-range structure of these glasses is important in establishing the structure-property relationships which are important for glass composition design but usually difficult to obtain from experimental characterization techniques alone. Classical molecular dynamics simulations were chosen in this dissertation to study iron containing glasses due to challenges in experimental techniques such as NMR spectroscopy originated from the paramagnetic nature of iron. Magnesium is also a common element in the oxide glass compositions and its effect on the structure of boroaluminosilicate glasses were also investigated. Magnesium ion (Mg2+) has relatively higher cation field strength than other modifier cations and its structural role in oxide glasses is still under debate. Therefore, investigating the effects of cation field strength of modifier cations in light of MgO in boroaluminosilicate glasses is also …
Date: May 2023
Creator: Tuheen, Manzila Islam
System: The UNT Digital Library
The Influence of Particle Morphology and Heat Treatment on the Microstructural Evolution of Silver Inks for Additively Manufactured RF Applications: A Comparison between Nanoflake and Reactive Inks (open access)

The Influence of Particle Morphology and Heat Treatment on the Microstructural Evolution of Silver Inks for Additively Manufactured RF Applications: A Comparison between Nanoflake and Reactive Inks

In recent years, advancements in additive manufacturing (AM) technologies have paved the way for 3D-printed flexible hybrid electronics (FHE) and created opportunities for extending these gains to RF applications. However, printed metal interconnects and devices are typically characterized by high porosity and chemical impurities that significantly limit their electrical conductivity and RF performance compared to bulk equivalents. Using direct ink writing (DIW), two silver inks, a nanoflake suspension and a nanoparticle-reactive ink, were investigated to understand the relationship between free interfacial energy, sintering behavior, DC conductivity, and RF loss. The printed silver samples were characterized using scanning electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy to monitor microstructural evolution, grain size and orientation, and chemical purity as a function of heat treatment temperature. Three heat treatments were applied to each ink: the manufacturer's recommendation, 225°C for 30 minutes, and 350°C for 30 minutes. Four-wire structures and coplanar waveguides were printed to compare the DC and RF performance up to 18 GHz, respectively. The results show that ink formulations that facilitate larger grains, high density, and good chemical purity have superior RF performance. A low resistivity of 1.4 times bulk Ag, average of 0.8% greater RF loss factor than evaporated Ag, …
Date: May 2023
Creator: Summers, Jason Masao
System: The UNT Digital Library

Switchable and Memorable Adhesion of Gold-Coated Microspheres with Electrochemical Modulation

Switchable adhesives using stimuli-responsive systems have many applications, including transfer printing, climbing robots, and gripping in pick and place processes. Among these adhesives, electroadhesive surface can spontaneously adjust their adhesion in response to an external electric field. However, electroadhesives usually need high voltage (e.g. kV) and the adhesion disappears upon turning off the signal. These limitations make them complicated and costly. In this research, we demonstrated a gold-coated silica microsphere (GCSM) with highly switchable and memorable adhesion triggered by a relatively small voltage (<30 V). In the experiment, a silica microsphere with a diameter of 15 μm was glued to a tipless atomic force microscope (AFM) cantilever. The nanoscale thick gold coating was sprayed on the surface of the microsphere by a sputter coater. AFM was used to explore the tunable adhesion with an external voltage at different relative humidity (RH). The results revealed that when applying a positive electrical bias at high RH, the adhesive force increased dramatically while it decreased to almost zero after applying a negative potential. Even if the bias was turned off, the adhesive force state could still be kept and erased on demand by simply applying a negative voltage. The adhesive force can be …
Date: May 2021
Creator: Wang, Jie (Materials scientist)
System: The UNT Digital Library

Crystallization and Lithium Ion Diffusion Mechanism in the Lithium-Aluminum-Germanium-Phosphate Glass-Ceramic Solid Electrolytes

NASCION-type lithium-aluminum-germanium-phosphate (LAGP) glass-ceramic is one of the most promising solid electrolyte (SEs) material for the next generation Li-ion battery. Based on the crystallization of glass-ceramic material, the two-step heat treatment was designed to control the crystallization of Li-ion conducting crystal in the glass matrix. The results show that the LAGP crystal is preferred to internally crystalize, Tg + 60%∆T is the nucleation temperature that provides the highest ion conductivity. The compositional investigation also found that, pure LAGP crystal phase can be synthesized by lowering the amount of GeO2. To fill gap of atomic structure in LAGP glass-ceramic, molecular dynamic (MD) simulation was used to build the crystal, glass, and interfacial structure LAGP. The aliovalent ion substitution induced an simultaneously redistribution of Li to the 36f interstitial site, and the rapid cooperative motion between the Li-ions at 36f can drop the activation energy of LAGP crystal by decreasing the relaxation energy; furthermore, an energy model was built based on the time-based analysis of Li-ion diffusion to articulate the behavior. The glass and interfacial structure show and accumulation of AlO4, GeO4 and Li at the interface, which explains the Li-trapping on the intergranular glass phase. An in-situ synchrotron X-ray study found …
Date: May 2021
Creator: Kuo, Po Hsuen
System: The UNT Digital Library

Synthesis, Phase Development, and the Mechanism for Negative Thermal Expansion in Aluminum Tungstate

An in-depth study of Al2W3O12 negative thermal expansion (NTE) ceramic was performed, focused on synthesis, phase mappings, and the underlying mechanisms shown to be responsible for NTE. Review of the literature has shown inconsistencies in reported values of the dilatometry measured coefficients of thermal expansion, and the temperature for the known monoclinic to orthorhombic phase transition. Two synthesis techniques are introduced: an ionic-liquid non-hydrolytic sol-gel synthesis route; and a low temperature solid state reaction synthesis for Al2W3O12. X-ray diffraction, Raman spectroscopy, and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) were used to verify the techniques. Two differential scanning calorimetry (DSC) experiments (high and low temperature) were performed on the material showing the transition between -5 and -20 °C and no other phase changes until a reported degradation above 1100 °C. Extensive dilatometry on the material led to the discovery of elastic transitions occurring in the polycrystalline sample capable of explaining the inconsistencies in reported dilatometry results. This is further developed into a proposed model defining the regions between these transitions. Each region has a different thermal expansion as well as a direct effect on the reaction of the material upon cooling. This proposed model may allow more consistent reporting of …
Date: May 2020
Creator: Rose, Kyle
System: The UNT Digital Library

Optical Emission Spectroscopy Monitoring Method for Additively Manufactured Iron-Nickel and Other Complex Alloy Samples

The method of optical emission spectroscopy has been used with Fe-Ni and other complex alloys to investigate in-situ compositional control for additive manufacturing. Although additive manufacturing of metallic alloys is an emerging technology, compositional control will be a challenge that needs to be addressed for a multitude of industries going forward for next-gen applications. This current scope of work includes analysis of ionized species generated from laser and metal powder interaction that is inherent to the laser engineered net shaping (LENS) process of additive manufacturing. By quantifying the amount of a given element's presence in the electromagnetic (EM) spectrum, this amount can be compared to the actual amount present in the sample via post-processing and elemental dispersive x-ray (EDX) data analysis. For this work a commercially available linear silicon CCD camera captured metallic ion peaks found within the ultraviolet (UV) region to avoid background contamination from blackbody radiation. Although the additive manufacturing environment can prove difficult to measure in-situ due to time dependent phenomena, extreme temperatures, and defect generation, OEM was able to capture multiple data points over a time series that showed a positive correlation between an element's peak intensity and the amount of that element found in the …
Date: May 2021
Creator: Flannery, David A. (David Andrew)
System: The UNT Digital Library

Defect-Engineered Two-Dimensional Transition Metal Dichalcogenides for High-Efficient Piezoelectric Sensor

Piezoelectricity in two-dimensional (2D) transition metal dichalcogenides (TMDs) has attracted significant attention due to their unique crystal structure and the lack of inversion centers when the bulk TMDs thin down to monolayer. Although the piezoelectricity effect in atomic-thickness TMDs has been demonstrated, they are not scalable. Herein, we demonstrate a piezoelectric effect from large-scale, sputtered MoS2 and WS2 using a robust defect-engineering based on the thermal-solvent annealing and solvent immersion process. This yields a higher piezoelectric output over 20 times after annealing or solvent immersion. Indeed, the piezoelectric responses are strengthened with the increases of defect density. Moreover, the MoS2 or WS2 piezoelectric device array shows an exceptional piezoelectric sensitivity with a high-level uniformity and excellent environmental stability under ambient conditions. A detailed study of the sulfur vacancy-dependent property and its resultant asymmetric structure-induced piezoelectricity is reported. The proposed approach is scalable and can produce advanced materials for flexible piezoelectric devices to be used in emerging bioinspired robotics and biomedical applications.
Date: May 2021
Creator: Kim, Junyoung
System: The UNT Digital Library
Engineering the Uniform Lying Helical Structure in Chiral Nematic Liquid Crystal Phase: From Morphology Transition to Dimension Control (open access)

Engineering the Uniform Lying Helical Structure in Chiral Nematic Liquid Crystal Phase: From Morphology Transition to Dimension Control

Chiral nematic liquid crystals or cholesteric liquid crystals (CLC) can be obtained by adding a chiral dopant into a nematic liquid crystal. Liquid crystal molecules spontaneously rotate along a long axis to form helical structures in CLC system. Both pitch size and orientation of the helical structure is determined by the boundary conditions and can be further tuned by external stimuli. Particularly, the uniform lying helical structure of CLC has attracted intensive attention due to its beam steering and diffraction abilities. Up to now, studies have worked on controlling the in-plane orientation of lying helix through surface rubbing and external stimuli. However, it remains challenging to achieve steady and uniform lying helical structure due to its higher energy, comparing with other helical configurations. Here, by varying the surface anchoring, uniform lying helical structure with long-range order is achieved as thermodynamically stable state without external support. Poly (6-(4-methoxy-azobenzene-4'-oxy) hexyl methacrylate) (PMMAZO), a liquid crystalline polymer, is deposited onto the silicon substrate to fine-tune the surface anchoring. By changing the grafting density of PMMAZO, both pitch size and orientation of lying helical structure are precisely controlled. As the grafting density increases, the enhanced titled deformation of helical structure suppresses the pitch size …
Date: May 2021
Creator: Jia, Zhixuan
System: The UNT Digital Library

Origin of Unusually Large Hall-Petch Strengthening Coefficients in High Entropy Alloys

High entropy alloys (HEAs), also referred to as complex concentrated alloys (CCAs), are a relatively new class of alloys that have gained significant attention since 2010 due to their unique balance of properties that include high strength, ductility and excellent corrosion resistance. HEAs are usually based on five or more elements alloyed in near equimolar concentrations, and exhibit simple microstructures by the formation of solid solution phases instead of complex compounds. HEAs have great potential in the design of new materials; for instance, for lightweight structural applications and elevated temperature applications. The relation between grain size and yield strength has been a topic of significant interest not only to researchers but also for industrial applications. Though some research papers have been published in this area, consensus among them is lacking, as the studies yielded different results. Al atom being a large atom causes significant lattice distortion. This work attempts to study the Hall-Petch relationship for Al0.3CoFeNi and Al0.3CoCrFeNi and to compare the data of friction stress σ0 and Hall-Petch coefficient K with published data. The base alloys for both these alloys are CoFeNi and CoCrFeNi respectively. It was observed by atom probe tomography (APT) that clustering of Al-Ni atoms in …
Date: May 2021
Creator: Jagetia, Abhinav
System: The UNT Digital Library

High Strain Rate Deformation Behavior of Single-Phase and Multi-Phase High Entropy Alloys

Fundamental understanding of high strain rate deformation behavior of materials is critical in designing new alloys for wide-ranging applications including military, automobile, spacecraft, and industrial applications. High entropy alloys, consisting of multiple elements in (near) equimolar proportions, represent a new paradigm in structural alloy design providing ample opportunity for achieving excellent performance in high strain rate applications by proper selection of constituent elements and/or thermomechanical processing. This dissertation is focused on fundamental understanding of high strain-rate deformation behavior of several high entropy alloy systems with widely varying microstructures. Ballistic impact testing of face centered cubic Al0.1CoCrFeNi high entropy alloy showed failure by ductile hole growth. The deformed microstructure showed extensive micro-banding and micro-twinning at low velocities while adiabatic shear bands and dynamic recrystallization were seen at higher velocities. The Al0.7CoCrFeNi and AlCoCrFeNi2.1 eutectic high entropy alloys, with BCC and FCC phases in lamellar morphology, showed failure by discing. A network of cracks coupled with small and inhomogeneous plastic deformation led to the brittle mode of failure in these eutectic alloys. Phase-specific mechanical behavior using small-scale techniques revealed higher strength and strain rate sensitivity for the B2 phase compared to the L12 phase. The interphase boundary demonstrated good stability without any …
Date: May 2021
Creator: Muskeri, Saideep
System: The UNT Digital Library

Effects of Surface Texture and Porosity on the Corrosion Behavior and Biocompatibility of Pure Zinc Biomaterials for Orthopedic Applications

In this dissertation, small and large NaCl particle-derived surfaces (Ra > 40 microns) were generated on 2D Zn materials, and the surfaces were carefully studied concerning topography, corrosion behavior, and bone cell compatibility. Increases in surface roughness accelerated the corrosion rate, and cell viability was maintained. This method was then extended to 3D porous scaffolds prepared by a hybrid AM/casting technique. The scaffolds displayed a near-net shape, an interconnected pore structure, increasing porosity paralleled to an increased corrosion rate, an ability to support cell growth, and powerful antibacterial properties. Lastly, nano/micro (Rz 0.02–1 microns) topographies were generated on 2D Zn materials, and the materials were comprehensively studied with special attention devoted to corrosion behavior, biocompatibility, osteogenic differentiation, immune cell response, hemocompatibility, and antibacterial performance. For the first time, the textured nonhemolytic surfaces on Zn were shown to direct cell fate, and the micro-textures promoted bone cell differentiation and directed immune cells away from an inflammatory phenotype.
Date: May 2021
Creator: Cockerill, Irsalan
System: The UNT Digital Library
Thermo-Mechanical Processing and Advanced Charecterization of NiTi and NiTiHf Shape Memory Alloys (open access)

Thermo-Mechanical Processing and Advanced Charecterization of NiTi and NiTiHf Shape Memory Alloys

Shape memory alloys (SMAs) represent a revolutionary class of active materials that can spontaneously generate strain based on an environmental input, such as temperature or stress. SMAs can provide potential solutions to many of today's engineering problems due to their compact form, high energy densities, and multifunctional capabilities. While many applications in the biomedical, aerospace, automotive, and defense industries have already been investigated and realized for nickel-titanium (NiTi) based SMAs, the effects of controlling and designing the microstructure through processing (i.e. extreme cold working) have not been well understood. Current Ni-Ti based SMAs could be improved upon by increasing their work output, improving dimensional stability, preventing accidental actuation, and reducing strain localization. Additionally, there is a strong need to increase the transformation temperature above 115 °C, the current limit for NiTi and is especially important for aerospace applications. Previous research has shown that the addition on ternary elements such as Au, Hf, Pd, Pt, and Zr to NiTi can greatly increase these transformation temperatures. However, there are several limiting factors with these ternary additions such as increased cost, especially with Au, Pd, and Pt, as well as, difficulty in conventionally processing these alloys. Therefore, the main objectives of this research …
Date: May 2020
Creator: Ley, Nathan A
System: The UNT Digital Library

Wear, Friction and High Shear Strain Deformation of Metallic Glasses

In this work, wear and scratch behavior of four different bulk metallic glasses (BMGs) namely Zr41.2Cu12.5Ni10Ti13.8Be22.5 (LM 1), Zr57Cu15.4Ni12.6Al10Nb5 (LM 106), Ni60Pd20P17B3 (Ni-BMG), and Pt57.5Cu14.7Ni5.3P22.5 (Pt-BMG) were compared. Shear band formation on the edges of the scratch groove with spallation was found to be the primary failure mechanism in progressive scratch tests. The wear behavior and the scratch response of model binary Ni-P metallic glasses was systematically studied as a function of composition, with amorphous alloy formation over the narrow range of 10 at% to 20 at% phosphorus. Pulsed current electrodeposition was used to obtain these binary amorphous alloys, which offers a facile and versatile alternative to conventional melt quenching route. The electrodeposited metallic glasses (EMGs) showed hardness values in the range of 6.6-7.4 GPa, modulus in the range of 155-163 GPa, and friction coefficient around 0.50. Among the studied alloys, electrodeposited Ni80P20 showed the lowest wear rate. The wear mechanism was determined to be extensive plastic deformation along with mild ploughing, micro tears, and formation of discontinuous lubricious oxide patches. The effect of phosphorus content on the structure, mechanical properties, and the tribological response was systematically investigated for biocompatible Co-P metallic glasses. With increase in phosphorus content, there was …
Date: May 2022
Creator: Pole, Mayur
System: The UNT Digital Library

Tuning of Microstructure and Mechanical Properties in Additively Manufactured Metastable Beta Titanium Alloys

The results from this study, on a few commercial and model metastable beta titanium alloys, indicate that the growth restriction factor (GRF) model fails to interpret the grain growth behavior in the additively manufactured alloys. In lieu of this, an approach based on the classical nucleation theory of solidification incorporating the freezing range has been proposed for the first time to rationalize the experimental observations. Beta titanium alloys with a larger solidification range (liquidus minus solidus temperature) exhibited a more equiaxed grain morphology, while those with smaller solidification ranges exhibited columnar grains. Subsequently, the printability of two candidate beta titanium alloys containing eutectoid elements (Fe) that are prone to beta fleck in conventional casting, i.e., Ti-1Al-8V-5Fe (wt%) or Ti-185, and Ti-10V-2Fe-3Al (wt%) or Ti-10-2-3, is further investigated via two different AM processing routes. These alloys are used for high-strength applications in the aerospace industry, such as landing gears and fasteners. The Laser Engineered Net Shaping and Selective Laser Melting (the two AM techniques) results show that locally higher solidification rates in AM can prevent the problem of beta fleck and potentially produce β-titanium alloys with significantly enhanced mechanical properties over conventionally cast/forged counterparts. Further, the detailed investigation of microstructure-mechanical property …
Date: May 2022
Creator: Nartu, Mohan Sai Kiran Kumar Yadav
System: The UNT Digital Library

Considerations in Designing Alloys for Laser-Powder Bed Fusion Additive Manufacturing

This work identifies alloy terminal freezing range, columnar growth, grain coarsening, liquid availability towards the terminal stage of solidification, and segregation towards boundaries as primary factors affecting the hot-cracking susceptibility of fusion-based additive manufacturing (F-BAM) processed alloys. Additionally, an integrated computational materials engineering (ICME)-based approach has been formulated to design novel Al alloys, and high entropy alloys for F-BAM processing. The ICME-based approach has led to heterogeneous nucleation-induced grain refinement, terminal eutectic solidification-enabled liquid availability, and segregation-induced coalescence of solidification boundaries during laser-powder bed fusion (L-PBF) processing. In addition to exhibiting a wide crack-free L-PBF processing window, the designed alloys exhibited microstructural heterogeneity and hierarchy (MHH), and thus could leverage the unique process dynamics of L-PBF to produce a fine-tunable MHH and mechanical behavior. Furthermore, alloy chemistry-based fine tuning of the stacking fault energy has led to transformative damage tolerant alloys. Such alloys can shield defects stemming from the stochastic powder bed in L-PBF, and consequently can prevent catastrophic failure despite the solidification defects. A modified materials systems approach that explicitly includes alloy chemistry as a means to modify the printability, properties and performance with F-BAM is also presented. Overall, this work is expected to facilitate application specific manufacture with …
Date: May 2022
Creator: Thapliyal, Saket
System: The UNT Digital Library

Time-Dependent Deformation Mechanisms in Metallic Glasses as a Function of Their Structural State

In this study, the time-dependent deformation behavior of several model bulk metallic glasses (BMGs) was studied. The BMGs were obtained in different structural states by thermal relaxation below their glass transition temperature, cryogenic thermal cycling, and chemical rejuvenation by micro-alloying. The creep behavior of Zr52.5Ti5Cu17.9Ni14.6Al10 BMG in different structural states was investigated as a function of peak load and temperature. The creep strain rate sensitivity (SRS) indicated a transition from shear transformation zone (STZ) mediated deformation at room temperature to diffusion dominated mechanisms at high temperatures. The relaxation enthalpy of Zr47Cu46Al7 BMG was found to increase significantly with the addition of 1 at% Ti, namely for Zr47Cu45Al7Ti1. Comparison of their respective free volumes indicated that chemical rejuvenation had a more pronounced effect compared to cryogenic thermal rejuvenation. Micro-pillar compression tests supported the improved plasticity with increase in free volume from the rejuvenation effect. Effect of chemistry change on mechanical response and time-dependent deformation was investigated for topologically equivalent Pt-Pd BMGs, where the Pt atoms were systematically replaced with Pd atoms (Pt42.5-xPdx)Cu27Ni9.5P21: x=0, 7.5, 20, 22.5, 35, 42.5). The hardness and reduced modulus increased while the degree of plasticity decreased with increase in Pd-content, which was attributed to the increase in …
Date: May 2022
Creator: Ghodki, Nandita
System: The UNT Digital Library

Design and Performance of Metal Matrix Composite Composed of Porous Boron Carbide Created by Magnetic Field-Assisted Freeze Casting Infiltrated with Aluminum (A356)

Magnetic field-assisted freeze-casting was used to create porous B4C ceramic preforms. An optimum slurry consisted of a mixture of B4C powders with 6 wt.% Er2O3 powder in an H2O-PVA solution and was cooled at a rate of 1 °C/min from room temperature to -30 °C resulting in porous green state ceramic preform with vertical channels. The Er2O3 powder was added to improve the magnetic response of the slurry. The preform was then sublimated to remove H2O and then sintered. The sintered ceramic preform was then infiltrated in the most vertically aligned channel direction with molten Al (A356) metal through a vacuum-assisted pump to create the metal matrix composite (MMC). Finite element analysis simulations were used to analyze and predict the anisotropic effect of B4C channel alignment on mechanical properties. The mechanical properties of the composite were then experimentally found via compression testing, which was compared with rule-of-mixtures and finite element modeling simulations, to analyze the effect of anisotropy due to magnetic field-assisted freeze-casting. This study reinforces the viability of cost-effective magnetic field-assisted freeze-casting as a method to create highly directional ceramic preforms, which can be subsequently metal infiltrated to produce MMCs with highly anisotropic toughness.
Date: May 2022
Creator: Gamboa, Gerardo
System: The UNT Digital Library

Integration, Stability, and Doping of Mono-Elemental and Binary Transition Metal Dichalcogenide Van der Waals Solids for Electronics and Sensing Devices

In this work, we have explored 2D semiconducting transition metal dichalcogenides (TMDs), black phosphorus (BP), and graphene for various applications using liquid and mechanical exfoliation routes. The topical areas of interest that motivate our work include considering factors such as device integration, stability, doping, and the effect of gasses to modulate the electronic transport characteristics of the underlying 2D materials. In the first area, we have integrated solution-processed transparent conducting oxides (TCOs), specifically indium-doped tin oxide (ITO) with BP, which is a commonly used TCO for solar cell devices. Here we have found surface treatment of glass substrates with a plasma before spin-coating the solution-processed ITO, to be effective in improving coverage and uniformity of the ITO film by promoting wettability and film adhesion. The maximum transmittance obtained was measured to be ~75% in the visible region, while electrical measurements made on BP/ITO heterostructures showed improved transport characteristics compared to the bare ITO film. Within the integration realm, inkjet-printing of BP and MoS2 p-n hetero-junctions on standard ITO glass substrates in a vertical architecture was also demonstrated. To address the issue of stability which some 2D materials such as BP face, we experimented with ionic liquids (ILs) to passivation the …
Date: May 2022
Creator: Mehta, Ravindra K
System: The UNT Digital Library
Characterization and Chemical Analysis of Fundamental Components for Lead Acid Batteries (open access)

Characterization and Chemical Analysis of Fundamental Components for Lead Acid Batteries

Although markets for alternative batteries, such as Li-ion, are growing, Pb-alloy batteries still dominate the market due to their low cost and good functionality. Even though these Pb-alloy batteries have been around since their discovery in 1859, little research involving advanced characterization techniques, such as synchrotron radiation X-ray diffraction (SR-XRD) and transmission electron diffraction (TEM) have been performed on Pb-alloys and sulfation, a failure mode in lead acid batteries, with regards to thermally- and electrochemically-induced changes at the atomic and microstructural scale. Therefore, there is a need to close this scientific gap between research and the application of Pb-alloy battery material. The main objectives of this research are to examine the process of sulfation and its growth mechanisms as well as to study the effects of minor alloying additions in Pb-alloy material. In the first case, nucleation and growth mechanisms of PbSO4 nano- and micro-particles in various solutions are examined using TEM to potentially reduce or control the buildup of PbSO4 on battery electrodes over time. The time dependency of particle morphology was observed using various reaction conditions. This insight can provide avenues to reduce unwanted buildup of PbSO4 on battery electrodes over time which can extend battery life and …
Date: May 2022
Creator: Wall, Michael T
System: The UNT Digital Library

Corrosion Behavior of High Entropy Alloys in Molten Chloride and Molten Fluoride Salts

High entropy alloys (HEAs) or complex concentrated alloys (CCAs) represent a new paradigm in structural alloy design. Molten salt corrosion behavior was studied for single-phase HEAs such as TaTiVWZr and HfTaTiVZr, and multi-phase HEAs such as AlCoCrFeNi2.1. De-alloying with porosity formation along the exposed surface and fluxing of unstable oxides were found to be primary corrosion mechanisms. Potentiodynamic polarization study was combined with systematic mass–loss study for TaTiVWZr, HfTaTiVZr, and AlCoCrFeNi2.1 as a function of temperature. Electrochemical impedance spectroscopy (EIS) was used for monitoring the corrosion of TaTiVWZr and HfTaTiVZr in molten fluoride salt at 650 oC. TaTiVWZr and AlCoCrFeNi2.1 showed low corrosion rate in the range of 5.5-7.5 mm/year and low mass-loss in the range of 35-40 mg/cm2 in molten chloride salt at 650 oC. Both TaTiVWZr and HfTaTiVZr showed similar mass loss in the range of 31-33 mg/cm2, which was slightly higher than IN 718 (~ 28 mg/cm2) in molten fluoride salt at 650 oC. Ta-W rich dendrite region in TaTiVWZr showed higher corrosion resistance against dissolution of alloying elements in the molten salt environment. AlCoCrFeNi2.1 showed higher resistance to galvanic corrosion compared to Duplex steel 2205 in molten chloride salt environment. These results suggest the potential use …
Date: May 2022
Creator: Patel, Kunjalkumar Babubhai
System: The UNT Digital Library
Fabrication of the Novel Asymmetric Polymeric Materials via Bottom-Up Approach (open access)

Fabrication of the Novel Asymmetric Polymeric Materials via Bottom-Up Approach

Asymmetric polymeric materials can be formed by either top-down or bottom-up methods. Bottom-up methods involve assembling the atoms and molecules to form small nanostructures by carefully controlled synthesis, which results in a reduction of some of the top-down limitations. In this dissertation, thermal, tribological and antireflective properties of polymeric materials have been enhanced by introducing structural asymmetry. The overall performance of commercial polymeric coatings, e.g. epoxy and polyvinyl chloride, has been improved by conducting the blending methods, specifically, chemical modification (α,ω-dihydroxydimethyl(methyl-vinyl)oligoorganosiloxane), cross-linking (triallyl isocyanurate), and antioxidant (tris(nonylphenyl) phosphite) incorporation. The nonequilibrium polymeric structures (moth-eye and square array) have been developed for the ultrahigh molecular weight block copolymers via the short-term solvent vapor annealing self-assembly. The large domain size of the moth eye structure allows for improvement of the light transmittance particularly in the visible and near infrared ranges, while the square arrangement of the block copolymer opens the possibility of magnetic data storage application by the large magnetic nanoparticles' embedment or masking of the superconductors.
Date: May 2022
Creator: Hnatchuk, Nataliia
System: The UNT Digital Library
Mechanically Driven Reconstruction of Materials at Sliding Interfaces to Control Wear (open access)

Mechanically Driven Reconstruction of Materials at Sliding Interfaces to Control Wear

To minimize global carbon emissions, having efficient jet engines and internal combustion engines necessitates utilizing lightweight alloys such as Al, Ti, and Mg-based alloys. Because of their remarkable strength/weight ratio, these alloys have received a lot of attention. Nonetheless, they have very poor tribological behavior, particularly at elevated temperatures beyond 200 °C, when most liquid lubricants begin to fail in lubrication. Over the last two decades, there has been a lot of interest in protecting Al, and Ti-based alloys by developing multiphase solid lubricants with a hard sublayer that provide mechanical strength and maintain the part's integrity while providing lubricity. The development of novel coatings with superior lubricity, high toughness, and high-temperature tolerance remains a challenging and hot topic to research and provide new engineered solutions for. To address and provide solutions to protect light-weight, i.e., Al, and Ti alloys at high-temperature and bestow superior tribological properties to such alloys, three types of adaptive lubricious coatings have been studied in this thesis: Nb-Ag-O self-healing lubricious ternary oxide, PEO-chameleon a self-adaptive multi-phase coating, and Sb2O3-MSH-C lubricious adaptive coatings to address this challenge. The development of the Nb-Ag-O ternary resulted in a coefficient of friction as low as 0.2 at 600 °C …
Date: May 2022
Creator: Shirani, Asghar
System: The UNT Digital Library