Direct Inject Mass Spectrometry for Illicit Chemistry Detection and Characterization (open access)

Direct Inject Mass Spectrometry for Illicit Chemistry Detection and Characterization

The field of direct inject mass spectrometry includes a massive host of ambient ionization techniques that are especially useful for forensic analysts. Whether the sample is trace amounts of drugs or explosives or bulk amounts of synthetic drugs from a clandestine laboratory, the analysis of forensic evidence requires minimal sample preparation, evidence preservation, and high sensitivity. Direct inject mass spectrometry techniques can rarely provide all of these. Direct analyte-probed nanoextraction coupled to nanospray ionization mass spectrometry, however, is certainly capable of achieving these goals. As a multifaceted tool developed in the Verbeck laboratory, many forensic applications have since been investigated (trace drug and explosives analysis). Direct inject mass spectrometry can also be easily coupled to assays to obtain additional information about the analytes in question. By performing a parallel artificial membrane assay or a cell membrane stationary phase extraction prior to direct infusion of the sample, membrane permeability data and receptor activity data can be obtained in addition to the mass spectral data that was already being collected. This is particularly useful for characterizing illicit drugs and their analogues for a biologically relevant way to schedule new psychoactive substances.
Date: May 2016
Creator: Williams, Kristina Charlene
System: The UNT Digital Library
Electrodeposited Metal Matrix Composites for Enhanced Corrosion Protection and Mechanical Properties (open access)

Electrodeposited Metal Matrix Composites for Enhanced Corrosion Protection and Mechanical Properties

In the oil and gas industry, high corrosion resistance and hardness are needed to extend the lifetime of the coatings due to exposure to high stress and salt environments. Electrodeposition has become a favorable technique in synthesizing coatings because of low cost, convenience, and the ability to work at low temperatures. Electrodeposition of metal matrix composites has become popular for enhanced corrosion resistance and hardness in the oil and gas industry because of the major problems that persist with corrosion. Two major alloys of copper-nickel, 90-10 and 70-30, were evaluated for microbial corrosion protection in marine environments on a stainless steel substrate. Copper and copper alloys are commonly used in marine environments to resist biofouling of materials by inhibiting microbial growth. Literature surveying the electrodeposition of Cu-Ni incorporated with nano- to micro- particles to produce metal matrix composites has been reviewed. Also, a novel flow cell design for the enhanced deposition of metal matrix composites was examined to obtain the optimal oriented structure of the layered silicates in the metal matrix. With the addition of montmorillonite into the Ni and Cu-Ni matrix, an increase in strength, adhesion, wear and fracture toughness of the coating occurs, which leads to an increase …
Date: May 2016
Creator: Thurber, Casey Ray
System: The UNT Digital Library
The One Electron Basis Set: Challenges in Wavefunction and Electron Density Calculations (open access)

The One Electron Basis Set: Challenges in Wavefunction and Electron Density Calculations

In the exploration of chemical systems through quantum mechanics, accurate treatment of the electron wavefunction, and the related electron density, is fundamental to extracting information concerning properties of a system. This work examines challenges in achieving accurate chemical information through manipulation of the one-electron basis set.
Date: May 2016
Creator: Mahler, Andrew
System: The UNT Digital Library
Lipidomic Analysis of Single Cells and Organelles Using Nanomanipulation Coupled to Mass Spectrometry (open access)

Lipidomic Analysis of Single Cells and Organelles Using Nanomanipulation Coupled to Mass Spectrometry

The capability to characterize disease states by way of determining novel biomarkers has led to a high demand of single cell and organelle analytical methodologies due to the unexpected heterogeneity present in cells of the same type. Lipids are of particular interest in the search for biomarkers due to their active roles in cellular metabolism and energy storage. Analyzing localized lipid chemistry from individual cells and organelles is challenging however, due to low analyte volume, limited discriminate instrumentation, and common requirements of separation procedures and expenditure of cell sample. Using nanomanipulation in combination with mass spectrometry, individual cells and organelles can be extracted from tissues and cultures in vitro to determine if heterogeneity at the cellular level is present. The discriminate extraction of a single cell or organelle allows the remainder of cell culture or tissue to remain intact, while the high sensitivity and chemical specificity of mass spectrometry provides structural information for limited volumes without the need for chromatographic separation. Mass analysis of lipids extracted from individual cells can be carried out in multiple mass spectrometry platforms through direct-inject mass spectrometry using nanoelectrospray-ionization and through matrix-assisted laser/desorption ionization.
Date: May 2016
Creator: Bowman, Amanda
System: The UNT Digital Library
Investigation of Post-Plasma Etch Fluorocarbon Residue Characterization, Removal and Plasma-Induced Low-K Damage for Advanced Interconnect Applications (open access)

Investigation of Post-Plasma Etch Fluorocarbon Residue Characterization, Removal and Plasma-Induced Low-K Damage for Advanced Interconnect Applications

Modern three-dimensional integrated circuit design is rapidly evolving to more complex architecture. With continuous downscaling of devices, there is a pressing need for metrology tool development for rapid but efficient process and material characterization. In this dissertation work, application of a novel multiple internal reflection infrared spectroscopy metrology is discussed in various semiconductor fabrication process development. Firstly, chemical bonding structure of thin fluorocarbon polymer film deposited on patterned nanostructures was elucidated. Different functional groups were identified by specific derivatization reactions and model bonding configuration was proposed for the first time. In a continued effort, wet removal of these fluorocarbon polymer was investigated in presence of UV light. Mechanistic hypothesis for UV-assisted enhanced polymer cleaning efficiency was put forward supported by detailed theoretical consideration and experimental evidence. In another endeavor, plasma-induced damage to porous low-dielectric constant interlayer dielectric material was studied. Both qualitative and quantitative analyses of dielectric degradation in terms of increased silanol content and carbon depletion provided directions towards less aggressive plasma etch and strip process development. Infrared spectroscopy metrology was also utilized in surface functionalization evaluation of very thin organic films deposited by wet and dry chemistries. Palladium binding by surface amine groups was examined in plasma-polymerized amorphous …
Date: May 2016
Creator: Mukherjee, Tamal
System: The UNT Digital Library
Synthesis and Electron Transfer Studies of Supramolecular Triads (open access)

Synthesis and Electron Transfer Studies of Supramolecular Triads

This study expands the role of polythiophenes as an electron donating chromophore within energy harvesting milti-modular donor-acceptor systems. The polythiophene moiety would act as an electron donating spacer group between the donor and acceptor entities, viz., phenothiazine and fulleropyrrolidine, respectively, in the newly synthesized supramolecular triads. The triads 10-{[2,2';5',2"] terthiophene-5-fulleropyrrolidine} phenothiazine and 10-{[2,2'] bithiophene-5-fulleropyrrolidine} phenothiazine were synthesized and characterized through electrochemical and spectroscopic methods to ascertain their structural integrity. the componets of the triads were selected for their established redox parameters. Phenothiazine would act as a secondary donor and would facilitate hole-transfer from the polythiophene primary electron donor, due to its ease of oxidation and yield a long-lived charge separated state. Fulleropyrrolidine would act as an acceptor for ease of reductive capabilities and its ability to hold multiple charges. Finally, occurrence of photoinduced electron transferleading to the anticipated charge separated states is established from advanced transient spectroscopic techniques on these novel supramolecular systems.
Date: May 2016
Creator: Bodenstedt, Kurt
System: The UNT Digital Library
Design of New Monodentate Ligands for Regioselectivity and Enantioselectivity Tuning in Late Transition Metal Catalysis (open access)

Design of New Monodentate Ligands for Regioselectivity and Enantioselectivity Tuning in Late Transition Metal Catalysis

The ability of gold(I) to activate many types of unsaturated bonds toward nucleophilic attack was not widely recognized until the early 2000s. One major challenge in gold catalysis is the control over regioselectivity when there are two or more possible products as a result of complicated mechanistic pathways. It is well know that the choice of ligand can have dramatic effects on which pathway is being followed but very rarely are the reasons for this selectivity understood. The synthesis of new acyclic diaminocarbenes was developed and a study of the ligand effects on the regioselectivity of a gold-catalyzed domino enyne cyclization hydroarylation reaction and a Nazarov cyclization was undertaken. New chiral acyclic diaminocarbenes were also developed and tested along side new C3-symmetric phosphite ligands in an asymmetric intramolecular hydroamination of allenes. Structure activity correlations were developed for the potential use in further rational ligand design. The synthesis of 6a,7-dihydro-5-amino-dibenzo[c,g]chromene derivatives via a gold-catalyzed domino reaction of alkynylbenzaldehydes in the presence of secondary amines was developed. These were sent to be screened for biological activity.
Date: May 2016
Creator: Ruch, Aaron A.
System: The UNT Digital Library
Laser Ablation Inductively Coupled Plasma Mass Spectrometry and Raman Spectroscopy Imaging of Biological Tissues (open access)

Laser Ablation Inductively Coupled Plasma Mass Spectrometry and Raman Spectroscopy Imaging of Biological Tissues

Laser Ablation Inductively coupled plasma mass spectrometry (LA-ICP-MS) and Raman spectroscopy are both powerful imaging techniques. Their applications are numerous and extremely potential in the field of biology. In order to improve upon LA-ICP-MS an in-house built cold cell was developed and its effectiveness studied by imaging Brassica napus seeds. To further apply LA-ICP-MS and Raman imaging to the field of entomology a prong gilled mayfly (Ephemeroptera: Leptophlebiidae) from the Róbalo River, located on Navarino Island in Chile, was studied. Analysis of both samples showcased LA-ICP-MS and Raman spectroscopy as effective instruments for imaging trace elements and larger molecules in biological samples respectively.
Date: May 2016
Creator: Gorishek, Emma Lee
System: The UNT Digital Library
Exploring Inorganic Catalysis with Electronic Structure Simulations (open access)

Exploring Inorganic Catalysis with Electronic Structure Simulations

Organometallic catalysis has attracted significant interest from both industry and academia due to its wide applications in organic synthetic transformations. Example of such transformations include the reaction of a zinc carbenoid with olefins to form cyclopropanes. The first project is a computational study using both density functional and correlated wavefunction methods of the reaction between ethylene and model zinc carbenoid, nitrenoid and oxenoid complexes (L-Zn-E-X, E = CH2, NH or O, L = X = I or Cl). It was shown that cyclopropanation of ethylene with IZnCH2I and aziridination of ethylene with IZnNHI proceed via a single-step mechanism with an asynchronous transition state. The reaction barrier for the aziridination with IZnNHI is lower than that of cyclopropanation. Changing the leaving group of IZnNHI from I to Cl, changes the mechanism of the aziridination reaction to a two-step pathway. The calculation results from the epoxidation with IZnOI and ClZnOCl oxenoids suggest a two-step mechanism for both oxenoids. Another important example of organometallic catalysis is the formation of alkyl arenes from arenes and olefins using transition metal catalysis (olefin hydroarylation). We studied with DFT methods the mechanism of a novel Rh catalyst (FlDAB)Rh(TFA)(η2–C2H4) [FlDAB = N,N’ -bis(pentafluorophenyl)-2,3-dimethyl-1,4-diaza-1,3-butadiene; TFA = trifluoroacetate] that converts …
Date: May 2016
Creator: Khani, Sarah Karbalaei
System: The UNT Digital Library

Computational Studies of Catalysis Mediated by Transition Metal Complexes

Access: Use of this item is restricted to the UNT Community
Computational methods were employed to investigate catalytic processes. First, DFT calculations predicted the important geometry metrics of a copper–nitrene complex. MCSCF calculations supported the open-shell singlet state as the ground state of a monomeric copper nitrene, which was consistent with the diamagnetic character deduced from experimental observations. The calculations predicted an elusive terminal copper nitrene intermediate. Second, DFT methods were carried out to investigate the mechanism of C–F bond activation by a low-coordinate cobalt(I) complex. The computational models suggested that oxidative addition, which is very rare for 3d metals, was preferred. A π–adduct of PhF was predicted to be a plausible intermediate via calculations. Third, DFT calculations were performed to study ancillary ligand effects on C(sp3)–N bond forming reductive elimination from alkylpalladium(II) amido complexes with different phosphine supporting ligands. The dimerization study of alkylpalladium(II) amido complexes indicated an unique arrangement of dative and covalent Pd-N bonds within the core four-membered ring of bimetallic complexes. In conclusion, computational methods enrich the arsenal of methods available to study catalytic processes in conjunction with experiments.
Date: May 2019
Creator: Jiang, Quan
System: The UNT Digital Library

Praseodymium Oxide and Organic Modified Cerium Oxide Nanoparticles for Electrodeposition of Nickel-Ceramic Nanocomposites to Enhance Corrosion Protection and Mechanical Properties

Access: Use of this item is restricted to the UNT Community
There is a consistent need in many industries, especially oil and gas, to develop coatings which have higher corrosion resistance and better hardness to extend the lifetime of equipment when it is exposed to hostile environments. Electrodeposition has been a favorable method in the synthesis of metal coatings because of its low cost, convenience, ability to work at low temperatures, and ability to control surface morphology and structure. The inclusion of ceramic nanoparticles in metal matrix composites has previously been investigated as a technique to not only increase the corrosion resistance of the native metal but also to improve the hardness and mechanical properties. Cerium oxide nanoparticles were modified through the grafting of organic groups with increasing hydrophobicity for use in nickel coatings on stainless steel to further improve the corrosion properties while maintaining the hardness of the nanocomposite coatings. The process of modifying the cerium oxide nanoparticles involved the use of aryl diazonium salts and resulted in multilayers forming on the surface of the nanoparticles. Praseodymium oxide nanoparticles were also investigated as additives to nickel coatings, since praseodymium oxide has not yet been studied as a possible corrosion protection enhancement in coatings. These coatings were evaluated for composition and …
Date: May 2019
Creator: Sanders, Stephen
System: The UNT Digital Library
Exploration of Transition Metal-Containing Catalytic Cycles via Computational Methods (open access)

Exploration of Transition Metal-Containing Catalytic Cycles via Computational Methods

Styrene production by a (FlDAB)PdII(TFA)(η2-C2H4) complex was modeled using density functional theory (DFT). Benzene C-H activation by this complex was studied via five mechanisms: oxidative addition/reductive elimination, sigma-bond metathesis, concerted metalation deprotonation (CMD), CMD activation of ethylene, and benzene substitution of ethylene followed by CMD of the ligated benzene. Calculations provided evidence that conversion of benzene and ethylene to styrene was initiated by the fifth pathway, arylation via CMD of coordinated benzene, followed by ethylene insertion into the Ru-Ph bond, and then β-hydrogen elimination. Also, monomer (active species)/dimer equilibrium concentrations were analyzed. The results obtained from present study were compared with that of a recently reported RhI complex to help identify more suitable catalysts for the direct production of styrene from ethylene and benzene. Second, theoretical studies of heterobimetallic {Ag–Fe(CO)5}+ fragments were performed in conjunction with experiments. The computational models suggested that for this first example of a heterodinuclear, metal-only FeAg Lewis pair (MOLP) that Fe(CO)5 acts as a Lewis base and AgI as a Lewis acid. The ῡCO bands of the studied molecules showed a blue shift relative to those measured for free Fe(CO)5, which indicated a reduction in Fe→CO backbonding upon coordination to silver(I). Electrostatic interaction is predicted …
Date: May 2019
Creator: Ceylan, Yavuz Selim
System: The UNT Digital Library
A Quenchofluorometric Study of Polycyclic Aromatic Hydrocarbons in Molecularly Organized Media (open access)

A Quenchofluorometric Study of Polycyclic Aromatic Hydrocarbons in Molecularly Organized Media

Detection, identification and separation of polycyclic aromatic compounds in environmental samples are of extreme importance since many of these compounds are well known for their potential carcinogenic and/or mutagenic activities. Selective quenching of molecular fluorescence can be utilized effectively to analyze mixtures containing different polycyclic aromatic hydrocarbons. Molecularly organized assemblies are used widely in detection and separation of these compounds mainly because of less toxicity and enhanced solubilization capabilities associated with these media. Feasibility of using nitromethane and the alkylpyridinium cation as selective fluorescence quenching agents for discriminating between alternant versus nonalternant polycyclic aromatic hydrocarbons (PAHs) is critically examined in several molecularly organized micellar solvent media. Fluorescence quenching is used to probe the structural features in mixed micelles containing the various combinations of anionic, cationic, nonionic and zwitterionic surfactants. Experimental results provide valuable information regarding molecular interactions between the dissimilar surfactants.
Date: May 1998
Creator: Pandey, Siddharth
System: The UNT Digital Library
Kinetics and Thermochemistry of Halogenated Species (open access)

Kinetics and Thermochemistry of Halogenated Species

Gas phase kinetics and thermochemistry of several halogenated species relevant to atmospheric, combustion and plasma chemistry were studied using experimental and ab initio theoretical techniques.
Date: May 1997
Creator: Misra, Ashutosh
System: The UNT Digital Library
Thermodynamic and Structural Studies of Layered Double Hydroxides (open access)

Thermodynamic and Structural Studies of Layered Double Hydroxides

The preparation of layered double hydroxides via titration with sodium hydroxide was thoroughly investigated for a number of M(II)/M(III) combinations. These titration curves were examined and used to calculate nominal solubility product constants and other thermodynamic quantities for the various LDH chloride systems.
Date: May 1998
Creator: Boclair, Joseph W. (Joseph Walter)
System: The UNT Digital Library
Thermophysical and Mechanical Properties of Polymer Liquid Crystals and Their Blends (open access)

Thermophysical and Mechanical Properties of Polymer Liquid Crystals and Their Blends

Tensile properties, namely the elastic modulus, tensile strength, percent of elongation at yield and at the break were determined for the pure components and blends. The results are connected to the respective phase diagrams and demonstrate that blending makes property manipulation possible. Blends for which the mechanical properties are better than those of pure EPs can be obtained.
Date: May 1994
Creator: López, Betty Lucy
System: The UNT Digital Library
Molecular Modeling Study of Oxidative Degradation of Polyperfluoroethers Catalyzed by Iron Fluoride Surfaces : An Extended Hückel Theory Approach (open access)

Molecular Modeling Study of Oxidative Degradation of Polyperfluoroethers Catalyzed by Iron Fluoride Surfaces : An Extended Hückel Theory Approach

Extended Hückel methods are known to be a useful tool in understanding surface phenomena. Important quantities about atoms and chemical bonds can be obtained from this computationally simple method, although caution must be exercised in interpreting the results. Application of Extended Hückel calculations to large metal clusters reveals the role of d orbitals in solids. Basic ideas of constructing model compounds have been developed. Several model systems for surface chemisorption processes are constructed in order to understand the surface catalyzed oxidative degradation of polyperfluoroethers. The activation of oxygen molecules can be explained. The Lewis acid character of the iron fluoride surface can be predicted. Based on these results, mechanisms of the degradation processes are discussed.
Date: May 1995
Creator: Wang, Yanbin
System: The UNT Digital Library
A Study of Intra- and Interaggregate Exchange Processes of Alkyllithium Compounds Using One- and Two- Dimensional NMR Spectroscopy (open access)

A Study of Intra- and Interaggregate Exchange Processes of Alkyllithium Compounds Using One- and Two- Dimensional NMR Spectroscopy

One- and two-dimensional NMR spectroscopy, including 13C{6Li}{1H} triple resonance techniques, were used to characterize a series of mixed alkyllithium aggregates and to study their exchange processes.
Date: May 1992
Creator: Pannell, Daniel K. (Daniel Kirk)
System: The UNT Digital Library
I. On the Mechanism of Acid Promoted Rearrangement of PCU-Derived Pinacols II. Synthesis of a Trimethyltrishomocubyl Helical Tubuland Diol (open access)

I. On the Mechanism of Acid Promoted Rearrangement of PCU-Derived Pinacols II. Synthesis of a Trimethyltrishomocubyl Helical Tubuland Diol

I. Reductive dimerization of pentacyclo[5.4.0.0.^2,6.0^3,10.0^5'9]undecane-8-one-(PCU-8-one, 53) affords a mixture of meso and d,l pinacols (55a and 55b respectively). Acid promoted rearrangement of 55a and 55b conceivably can proceed with migration of C(7)-C(8) and/or C(8)-C(9) to form the corresponding pinacolone(s). In our hands, acid promoted rearrangement of 55a and 55b each proceeds with exclusive migration of C(7)- C(8) bond, thereby affording 58a and 59a respectively. Mechanistic features of this rearrangement are discussed. II. 4,7,1 l-trimethylpentacyclo[6.3.0.0.^2,6.0^3,l0.0^5,9]undecane-exo-4,exo-7-diol (23a) was successfully synthesized. This diol crystallizes in a helical tubuland lattice although its molecular structure does not possess C2 rotational symmetry.
Date: May 1995
Creator: Liu, Zenghui
System: The UNT Digital Library
Investigation of Ultratrace Metallic and Organic Contaminants in Semiconductor Processing Environments (open access)

Investigation of Ultratrace Metallic and Organic Contaminants in Semiconductor Processing Environments

Detection of ultratrace levels of metallic ion impurities in hydrofluoric acid solutions and alkaline hydrogen peroxide solution was demonstrated using a silicon-based sensing electrode. The sensor's operation principle is based on direct measurements of the silicon open-circuit potential shift generated by the interaction between metallic ions and the silicon-based sensing surface. The new sensor can have practical applications in the on-line monitoring of microelectronic chemical processing. The detection of Ag+ content in KODAK waste water was carried out successfully by this novel sensor. Trace levels of organic impurities in the hydrofluoric acid solutions and in the cleanroom air were characterized by multiple internal reflection infrared spectroscopy (MIRIS) using an organics probe prepared directly from a regular silicon wafer.
Date: May 1997
Creator: Xu, Fei, 1971-
System: The UNT Digital Library
Part 1. Investigation of Aluminum Amino Acid Complexes; Part 2. Structural Studies of Aluminum Chalcogen Bonds (open access)

Part 1. Investigation of Aluminum Amino Acid Complexes; Part 2. Structural Studies of Aluminum Chalcogen Bonds

Five different complexes of aluminum and amino acids have been synthesized and characterized. Reaction between aluminum halides and amino acids that do not contain either a carboxylate or a hydroxy group in the side chain produce complexes of the general formula, [Al(amino acid)_n(halide)_3-n]_m. The most prevalent form of this form of complex is where n = 2, and an example of this in which the halide is replaced by hydroxide ligand has been structurally characterized. The complex for which n = 3 may be obtained by employing a large excess of acid, and that for which n = 1 may be obtained by employing either equimolar conditions or an excess of aluminum halide. Reactions of aluminum halides with amino acids that contain either a carboxylate or hydroxy-containing side chain may result in complexes in which the side-chain is also bound. These proved impossible to characterize fully in the case of aspartic acid. For serine, however, a complex in which the amino acid binds in a chelating fashion through both the carboxylate and hydroxy groups was isolated. It was possible to form complexes when utilizing aluminum alkyls as the metal source. However, these complexes could only be isolated when the reactivity …
Date: May 1996
Creator: Gravelle, Philip W. (Philip Wyn)
System: The UNT Digital Library
Part I: Solid State Studies of Larger Calixarenes : Part II: Synthesis and Characterization of Metallocalixarenes (open access)

Part I: Solid State Studies of Larger Calixarenes : Part II: Synthesis and Characterization of Metallocalixarenes

Calixarenes are a class of macrocyclic compounds that have garnered interest in large part because of their ability to form host-guest complexes with various types of molecules. For all of the studies of complex formation by calixarenes, most of the work to date has concentrated upon the smaller calixarenes, and little is understood about the relationship between the complexes formed when in solution and that observed in the solid state. The first part of the study, presented in Chapter 3, is of the solid-state properties of two of the larger calixarenes, and in comparison to other reported structures reveals patterns to the observed conformations both in the solid state and in solution. The formation of metal complexes has also been investigated and has focused extensively upon the metals as guests. Thus, the ability of the calixarenes to act as ligands in inorganic complexes has been virtually untapped, despite the polyoxo binding site they can easily provide, and very few metallocalixarenes have been reported. The second part of this study goes beyond the simple solid-state properties of such compounds, and involves the synthesis of several metallocalixarenes as part of a project directed at the functionalization of calixarenes with the components of …
Date: May 1998
Creator: Smith, Janna Marie
System: The UNT Digital Library
Synthesis and Study of Bioactive Compounds: I. Pyrethroids; II. Glutathione Derivatives (open access)

Synthesis and Study of Bioactive Compounds: I. Pyrethroids; II. Glutathione Derivatives

Part I: In the first study of pyrethroids, twenty-one novel pyrethroid esters bearing strong electron-withdrawing groups (e.g., halomethylketo and nitro groups) in the double bond side chain of the cyclopropane acid moiety have been synthesized and evaluated for insect toxicity. Rather than the usually employed Wittig reaction for these syntheses, the novel pyrethroid acid moieties were prepared by amino acidcatalyzed Knoevenagel condensations under mild conditions. In the second study of pyrethroids, fourteen pyrethroid-like carbonates were synthesized by condensation of a variety of alcohols and the chloroformates of the corresponding known pyrethroid alcohols.
Date: May 1995
Creator: Chyan, Ming-Kuan
System: The UNT Digital Library
NMR Study of the Reorientational and Exchange Dynamics of Organometallic Complexes (open access)

NMR Study of the Reorientational and Exchange Dynamics of Organometallic Complexes

Investigations presented here are (a) the study of reorientational dynamics and internal rotation in transition metal complexes by NMR relaxation experiments, and (b) the study of ligand exchange dynamics in transition metal complexes by exchange NMR experiments. The phenyl ring rotation in Ru3(CO)9(μ3-CO)(μ3-NPh) and Re(Co)2(CO)10(μ3- CPh) was monitored by 13C NMR relaxation experiments to probe intramolecular electronic and/or steric interactions. It was found that the rotation is relatively free in the first complex, but is restrained in the second one. The steric interactions in the complexes were ascertained by the measurement of the closest approach intramolecular distances. The rotational energy barriers in the two complexes were also calculated by using both the Extended Hiickel and Fenske-Hall methods. The study suggests that the barrier is due mainly to the steric interactions. The exchange NMR study revealed two carbonyl exchange processes in both Ru3(CO)9(μ3-CO)(μ3-NPh) and Ru3(CO)8(PPh3)(μ3-CO)(μ3-NPh). The lower energy process is a tripodal rotation of the terminal carbonyls. The higher energy process, resulting in the exchange between the equatorial and bridging carbonyls, but not between the axial and bridging carbonyls, involves the concerted formation of edge-bridging μ2-CO moieties. The effect of the PPh3 ligand on the carbonyl exchange rates has been discussed. …
Date: May 1996
Creator: Wang, Dongqing
System: The UNT Digital Library