Degree Level

Investigation of Structure-Property Effects on Nanoindentation and Small-Scale Mechanical Testing of Irradiated Additively Manufactured Stainless Steels (open access)

Investigation of Structure-Property Effects on Nanoindentation and Small-Scale Mechanical Testing of Irradiated Additively Manufactured Stainless Steels

Additively manufactured (AM) 316L and 17-4PH stainless steel parts, concretely made by laser powder bed fusion (L-PBF), are characterized and micro-mechanical properties of those steels are analyzed. This study also explored and extended to proton irradiation and small-scale mechanical testing of those materials, to investigate how irradiation affects microstructural evolution and thus mechanical properties at the surface level, which could be detrimental in the long term in nuclear applications. In-depth anisotropy analysis of L-PBF 316L stainless steel parts with the variations of volumetric energy density, a combined study of nanoindentation with EBSD (electron backscatter diffraction) mapping is shown to be an alternative methodology for enriching qualification protocols. Each grain with a different crystallographic orientation was mapped successfully by proper indentation properties. <122> and <111> oriented grains displayed higher than average indentation modulus and hardness whereas, <001>, <101>, and <210> oriented grains were found to be weaker in terms of indentation properties. Based on an extensive nanoindentation study, L-PBF 17-4 PH stainless steels are found to be very sensitive to high load rates and irradiation further escalates that sensitivity, especially after a 0.25 s-1 strain rate. 3D porosity measurement via X-ray microscope ensures L-PBF stainless steel parts are of more than …
Date: August 2022
Creator: Uddin, Mohammad Jashim
System: The UNT Digital Library
Development of an Interpolation-Free Sharp Interface Immersed Boundary Method for General CFD Simulations (open access)

Development of an Interpolation-Free Sharp Interface Immersed Boundary Method for General CFD Simulations

Immersed boundary (IB) methods are attractive due to their ability to simulate flow over complex geometries on a simple Cartesian mesh. Unlike conformal grid formulation, the mesh does not need to conform to the shape and orientation of the boundary. This eliminates the need for complex mesh and/or re-meshing in simulations with moving/morphing boundaries, which can be cumbersome and computationally expensive. However, the imposition of boundary conditions in IB methods is not straightforward and numerous modifications and refinements have been proposed and a number of variants of this approach now exist. In a nutshell, IB methods in the literature often suffer from numerical oscillations, implementation complexity, time-step restriction, burred interface, and lack of generality. This limits their ability to mimic conformal grid results and enforce Neumann boundary conditions. In addition, there is no generic IB capable of solving flow with multiple potentials, closely/loosely packed structures as well as IBs of infinitesimal thickness. This dissertation describes a novel 2$ ^{\text{nd}} $ order direct forcing immersed boundary method designed for simulation of two- and three-dimensional incompressible flow problems with complex immersed boundaries. In this formulation, each cell cut by the IB is reshaped to conform to the shape of the IB. IBs …
Date: August 2022
Creator: Kamau, Kingora
System: The UNT Digital Library

Embedded Sensing Textiles for Corrosion Detection

Corrosion in underground and submerged steel pipes is a global problem. Coatings serve as an impermeable barrier or a sacrificial element to the transport of corrosive fluids. When this barrier fails, corrosion in the metal initiates. There is a critical need for sensors at the metal/coating interface as an early alert system. Current options utilize metal sensors, leading to accelerating corrosion. In this dissertation, a non-conductive sensor textile as a viable solution was investigated. For this purpose, non-woven zinc (II) oxide-polyvinylidene fluoride (ZnO-PVDF) nanocomposite fiber textiles were prepared in a range of weight fractions (1%, 3%, and 5% ZnO) and placed at the coating/steel interface. Electrochemical impedance spectroscopy (EIS) testing was performed during the immersion of the coated samples to validate the effectiveness of the sensor textile. In the second part of this dissertation, an accelerated thermal cyclic method has been applied to determine sensor's reliability in detecting corrosion under actual service condition. The results suggested that the coating is capable of detecting corrosion under harsh conditions. Moreover, the addition of ZnO decreases the error in sensor textile and improved coating's barrier property. In the next phase, experiments were conducted to detect the type of corrosion (pitting or uniform) underneath …
Date: August 2021
Creator: Chowdhury, Tonoy
System: The UNT Digital Library