Degree Discipline

Structural Design and Its Impact on Thermal Efficiency and Corrosion of All-Aluminum Microchannel Heat Exchangers

In this study, high-fidelity conjugate heat transfer simulations are used to model a micro-channel heat exchanger (MCHE) in a crossflow to study its thermal-hydraulic performance. This study considers three different microchannels (internal flow) geometries (circular, triangular, and square) with louver-shaped fins. The local flow field showed a strong coupling between the microchannel flow, solid domain, and crossflow. The flow separation and wake regions formed near MCHE resulted in a large variation in the velocity field and temperature in the crossflow. The wake region had a significant spanwise variation due to its interaction with fins, which also causes variations in the thermal boundary layer. The heat conduction in the solid structure provided a non-uniform temperature field with a higher temperature near the microchannel and a slightly lower temperature near the surface exposed to the crossflow. The microchannel flow analysis showed that the internal geometry affects the pressure drop, which is highest for the triangular MCHE and lowest for the circular MCHE. However, the microchannel flow temperature change was relatively similar for all microchannels. Results showed that for the same volume of the microchannel, the circular shape microchannel has a higher performance index value than the triangular and square shapes. This study …
Date: July 2023
Creator: Ahmed, Hossain
System: The UNT Digital Library