Degree Department

Nonlinear Boundary Conditions in Sobolev Spaces (open access)

Nonlinear Boundary Conditions in Sobolev Spaces

The method of dual steepest descent is used to solve ordinary differential equations with nonlinear boundary conditions. A general boundary condition is B(u) = 0 where where B is a continuous functional on the nth order Sobolev space Hn[0.1J. If F:HnCO,l] —• L2[0,1] represents a 2 differential equation, define *(u) = 1/2 IIF < u) li and £(u) = 1/2 l!B(u)ll2. Steepest descent is applied to the functional 2 £ a * + £. Two special cases are considered. If f:lR —• R is C^(2), a Type I boundary condition is defined by B(u) = f(u(0),u(1)). Given K: [0,1}xR—•and g: [0,1] —• R of bounded variation, a Type II boundary condition is B(u) = ƒ1/0K(x,u(x))dg(x).
Date: December 1984
Creator: Richardson, Walter Brown
System: The UNT Digital Library