States

Core-Shell Based Metamaterials: Fabrication Protocol and Optical Properties (open access)

Core-Shell Based Metamaterials: Fabrication Protocol and Optical Properties

The objective of this study is to examine core-shell type plasmonic metamaterials aimed at the development of materials with unique electromagnetic properties. The building blocks of metamaterials under study consist of gold as a metal component, and silica and precipitated calcium carbonate (PCC) as the dielectric media. The results of this study demonstrate important applications of the core-shells including scattering suppression, airborne obscurants made of fractal gold shells, photomodification of the fractal structure providing windows of transparency, and plasmonics core-shell with a gain shell as an active device. Plasmonic resonances of the metallic shells depend on their nanostructure and geometry of the core, which can be optimized for the broadband extinction. Significant extinction from the visible to mid-infrared makes fractal shells very attractive as bandpass filters and aerosolized obscurants. In contrast to the planar fractal films, where the absorption and reflection equally contribute to the extinction, the shells' extinction is caused mainly by the absorption. This work shows that the Mie scattering resonance of a silica core with 780 nm diameter at 560 nm is suppressed by 75% and only partially substituted by the absorption in the shell so that the total transmission is noticeably increased. Effective medium theory supports …
Date: December 2017
Creator: De Silva, Vashista C
System: The UNT Digital Library
Magnetomorphic Oscillations in Zinc (open access)

Magnetomorphic Oscillations in Zinc

In making this study it is important to search for ways to enhance and, if possible, make detection of MMO signals simpler in order that this technique for obtaining FS measurements may be extended to other materials. This attempt to improve measurement techniques has resulted in a significant discovery: the eddy-current techniques described in detail in a later section which should allow MMO to be observed and sensitively measured in many additional solids. The second major thrust of the study has been to use the newly discovered eddy-current technique in obtaining the first indisputable observation of MMO in zinc.
Date: August 1970
Creator: Waller, William Marvin
System: The UNT Digital Library
Scaling Behaviors and Mechanical Properties of Polymer Gels (open access)

Scaling Behaviors and Mechanical Properties of Polymer Gels

Polymer gels undergo a volume phase transition in solvent in response to an infinitesimal environmental change. This remarkable phenomenon has resulted in many potential applications of polymer gels. The understanding of its mechanical properties has both scientific and technological importance. For this purpose, we have developed a novel method for measuring Poisson's ratio, which is one of the most important parameters determining the mechanical property of gels. Using this method, Poisson's ratio in N-isopropyacrylamide (NIPA) and polyacrylamide (PAAM) gels has been studied.
Date: May 1994
Creator: Li, Chʻun-fang
System: The UNT Digital Library
Quantum-Confined CdS Nanoparticles on DNA Templates (open access)

Quantum-Confined CdS Nanoparticles on DNA Templates

As electronic devices became smaller, interest in quantum-confined semiconductor nanostructures increased. Self-assembled mesoscale semiconductor structures of II-VI nanocrystals are an especially exciting subject because of their controllable band gap and unique photophysical properties. Several preparative methods to synthesize and control the sizes of the individual nanocrystallites and the electronic and optical properties have been intensively studied. Fabrication of patterned nanostructures composed of quantum-confined nanoparticles is the next step toward practical applications. We have developed an innovative method to fabricate diverse nanostructures which relies on the size and a shape of a chosen deoxyribonucleic acid (DNA) template.
Date: May 1998
Creator: Rho, Young Gyu
System: The UNT Digital Library
Model for Long-range Correlations in DNA Sequences (open access)

Model for Long-range Correlations in DNA Sequences

We address the problem of the DNA sequences developing a "dynamical" method based on the assumption that the statistical properties of DNA paths are determined by the joint action of two processes, one deterministic, with long-range correlations, and the other random and delta correlated. The generator of the deterministic evolution is a nonlinear map, belonging to a class of maps recently tailored to mimic the processes of weak chaos responsible for the birth of anomalous diffusion. It is assumed that the deterministic process corresponds to unknown biological rules which determine the DNA path, whereas the noise mimics the influence of an infinite-dimensional environment on the biological process under study. We prove that the resulting diffusion process, if the effect of the random process is neglected, is an a-stable Levy process with 1 < a < 2. We also show that, if the diffusion process is determined by the joint action of the deterministic and the random process, the correlation effects of the "deterministic dynamics" are cancelled on the short-range scale, but show up in the long-range one. We denote our prescription to generate statistical sequences as the Copying Mistake Map (CMM). We carry out our analysis of several DNA sequences, …
Date: December 1996
Creator: Allegrini, Paolo
System: The UNT Digital Library
Angular Dependence of the Stopping Processes and the Yields of Ion-induced Electron Emission from Channeled MEV Protons in <100> Silicon Foils (open access)

Angular Dependence of the Stopping Processes and the Yields of Ion-induced Electron Emission from Channeled MEV Protons in <100> Silicon Foils

The present work reports the experimental evidence of anomalous energy loss, energy straggling, and the corresponding ion-induced electron emission yields of channeled protons in silicon.
Date: December 1993
Creator: Zhao, Zhiyong
System: The UNT Digital Library
Structural and Photoelectron Emission Properties of Chemical Vapor Deposition Grown Diamond Films (open access)

Structural and Photoelectron Emission Properties of Chemical Vapor Deposition Grown Diamond Films

The effects of methane (CH4), diborone (B2H6) and nitrogen (N2) concentrations on the structure and photoelectron emission properties of chemical vapor deposition (CVD) polycrystalline diamond films were studied. The diamond films were grown on single-crystal Si substrates using the hot-tungsten filament CVD technique. Raman spectroscopy and x-ray photoelectron spectroscopy (XPS) were used to characterize the different forms of carbon in the films, and the fraction of sp3 carbon to sp3 plus sp2 carbon at the surface of the films, respectively. Scanning electron microscopy (SEM) was used to characterize the surface morphology of the films. The photoelectron emission properties were determined by measuring the energy distributions of photoemitted electrons using ultraviolet photoelectron spectroscopy (UPS), and by measuring the photoelectric current as a function of incident photon energy.
Date: August 1998
Creator: Akwani, Ikerionwu Asiegbu
System: The UNT Digital Library
The Stopping Power of Amorphous and Channelled Silicon at All Energies as Computed with the Binary Encounter Approximation (open access)

The Stopping Power of Amorphous and Channelled Silicon at All Energies as Computed with the Binary Encounter Approximation

This thesis utilizes the binary encounter approximation to calculate the stopping power of protons penetrating silicon. The main goal of the research was to make predictions of the stopping power of silicon for low-energy and medium-energy channelled protons, in the hope that this will motivate experiments to test the theory developed below. In attaining this goal, different stopping power theories were compared and the binary encounter approach was applied to random (non-channelled) and high-energy channelled protons in silicon, and these results were compared with experimental data.
Date: December 1994
Creator: Bickel, David, 1970-
System: The UNT Digital Library
Evolution of Vacancy Supersaturations in MeV Si Implanted Silicon (open access)

Evolution of Vacancy Supersaturations in MeV Si Implanted Silicon

High-energy Si implantation into silicon creates a net defect distribution that is characterized by an excess of interstitials near the projected range and a simultaneous excess of vacancies closer to the surface. This defect distribution is due to the spatial separation between the distributions of interstitials and vacancies created by the forward momentum transferred from the implanted ion to the lattice atom. This dissertation investigates the evolution of the near-surface vacancy excess in MeV Si-implanted silicon both during implantation and post-implant annealing. Although previous investigations have identified a vacancy excess in MeV-implanted silicon, the investigations presented in this dissertation are unique in that they are designed to correlate the free-vacancy supersaturation with the vacancies in clusters. Free-vacancy (and interstitial) supersaturations were measured with Sb (B) dopant diffusion markers. Vacancies in clusters were profiled by Au labeling; a new technique based on the observation that Au atoms trap in the presence of open-volume defects. The experiments described in this dissertation are also unique in that they were designed to isolate the deep interstitial excess from interacting with the much shallower vacancy excess during post-implant thermal processing.
Date: May 1999
Creator: Venezia, Vincent C.
System: The UNT Digital Library
A Study of Quantum Electron Dynamics in Periodic Superlattices under Electric Fields (open access)

A Study of Quantum Electron Dynamics in Periodic Superlattices under Electric Fields

This thesis examines the quantum dynamics of electrons in periodic semiconductor superlattices in the presence of electric fields, especially uniform static fields. Chapter 1 is an introduction to this vast and active field of research, with an analysis and suggested solutions to the fundamental theoretical difficulties. Chapter 2 is a detailed historical review of relevant theories, and Chapter 3 is a historical review of experiments. Chapter 4 is devoted to the time-independent quantum mechanical study of the electric-field-induced changes in the transmission properties of ballistic electrons, using the transfer matrix method. In Chapter 5, a new time-dependent quantum mechanical model free from the fundamental theoretical difficulties is introduced, with its validity tested at various limiting cases. A simplified method for calculating field-free bands of various potential models is designed. In Chapter 6, the general features of "Shifting Periodicity", a distinctive feature of this new model, is discussed, and a "Bloch-Floquet Theorem" is rigorously proven. Numerical evidences for the existence of Wannier-Stark-Ladders are presented, and the conditions for its experimental observability is also discussed. In Chapter 7, an analytical solution is found for Bloch Oscillations and Wannier-Stark-Ladders at low electric fields. In Chapter 8, a new quantum mechanical interpretation for Bloch …
Date: May 1996
Creator: Yuan, Daiqing
System: The UNT Digital Library
Expulsion of Carriers from the Double-Barrier Quantum Well and Investigation of Its Spectral and Transport Consequences (open access)

Expulsion of Carriers from the Double-Barrier Quantum Well and Investigation of Its Spectral and Transport Consequences

In this work I investigate the expulsion of carriers from nanostructures using the double-barrier quantum well (DBQW) as an example and discuss manifestations of this effect in the spectrum of the DBQW in absence of bias, and in the tunneling current in presence of bias. Assuming equality of the Fermi energy in all regions of the considered system, I compute the relative density of carriers localized in the DBQW and conclude that a fraction of carriers is expelled from this nanostructure.
Date: March 1992
Creator: Chyla, Wojciech Tadeusz
System: The UNT Digital Library
L-Shell X-Ray Production Cross Sections for ₂₀Ca, ₂₆Fe, ₂₈Ni, ₂₉Cu, ₃₀Zn, ₃₁Ga, and ₃₂Ge by Hydrogen, Helium, and Lithium Ions (open access)

L-Shell X-Ray Production Cross Sections for ₂₀Ca, ₂₆Fe, ₂₈Ni, ₂₉Cu, ₃₀Zn, ₃₁Ga, and ₃₂Ge by Hydrogen, Helium, and Lithium Ions

L-shell x-ray production cross sections are presented for Fe, Ni, Cu, Zn, Ga, and Ge by 0.5- to 5.0-MeV protons and by 0.5- to 8.0-MeV helium ions and Ca, Fe, Ni, Cu, and Ge by 0.75- to 4.5-MeV lithium ions. These measurements are compared to the first Born theory and the perturbed-stationary- state theory with energy-loss, Coulomb deflection, and relativistic corrections (ECPSSR). The results are also compared to previous experimental investigations. The high precision x-ray measurements were performed with a windowless Si(Li) detector. The efficiency of the detector was determined by the use of thin target atomic-field bremsstrahlung produced by 66.5 keV electrons. The measured bremsstrahlung spectra were compared to theoretical bremsstrahlung distributions in order to obtain an efficiency versus energy curve. The targets for the measurement were manufactured by the vacuum evaporation of the target element onto thin foils of carbon. Impurities in the carbon caused interferences inthe L-shell x-ray peaks. Special cleansing procedures were developed that reduced the impurity concentrations in the carbon foil, making the use of less than 5 μg/cm^2 targets possible. The first Born theory is seen to greatly overpredict the data at low ion energies. The ECPSSR theory matches the data very well at …
Date: May 1992
Creator: McNeir, Michael Ridge
System: The UNT Digital Library
Experimental Synchronization of Chaotic Attractors Using Control (open access)

Experimental Synchronization of Chaotic Attractors Using Control

The focus of this thesis is to theoretically and experimentally investigate two new schemes of synchronizing chaotic attractors using chaotically operating diode resonators. The first method, called synchronization using control, is shown for the first time to experimentally synchronize dynamical systems. This method is an economical scheme which can be viably applied to low dimensional dynamical systems. The other, unidirectional coupling, is a straightforward means of synchronization which can be implemented in fast dynamical systems where timing is critical. Techniques developed in this work are of fundamental importance for future problems regarding high dimensional chaotic dynamical systems or arrays of mutually linked chaotically operating elements.
Date: December 1994
Creator: Newell, Timothy C. (Timothy Charles)
System: The UNT Digital Library
Studies of Classically Chaotic Quantum Systems within the Pseudo-Probablilty Formalism (open access)

Studies of Classically Chaotic Quantum Systems within the Pseudo-Probablilty Formalism

The evolution of classically chaotic quantum systems is analyzed within the formalism of Quantum Pseudo-Probability Distributions. Due to the deep connections that a quantum system shows with its classical correspondent in this representation, the Pseudo-Probability formalism appears to be a useful method of investigation in the field of "Quantum Chaos." In the first part of the thesis we generalize this formalism to quantum systems containing spin operators. It is shown that a classical-like equation of motion for the pseudo-probability distribution ρw can be constructed, dρw/dt = (L_CL + L_QGD)ρw, which is rigorously equivalent to the quantum von Neumann-Liouville equation. The operator L_CL is undistinguishable from the classical operator that generates the semiclassical equations of motion. In the case of the spin-boson system this operator produces semiclassical chaos and is responsible for quantum irreversibility and the fast growth of quantum uncertainty. Carrying out explicit calculations for a spin-boson Hamiltonian the joint action of L_CL and L_QGD is illustrated. It is shown that the latter operator, L_QGD makes the spin system 'remember' its quantum nature, and competes with the irreversibility induced by the former operator. In the second part we test the idea of the enhancement of the quantum uncertainty triggered by …
Date: August 1992
Creator: Roncaglia, Roberto
System: The UNT Digital Library
Electron Density and Collision Frequency Studies Using a Resonant Microwave Cavity as a Probe (open access)

Electron Density and Collision Frequency Studies Using a Resonant Microwave Cavity as a Probe

Electron densities and collision frequencies were obtained on a number of gases in a dc discharge at low pressures (0.70-2mm of Hg). These measurements were performed by microwave probing of a filament of the dc discharge placed coaxially in a resonant cavity operating in a TM₀₁₀ mode. The equipment and techniques for making the microwave measurements employing the resonant cavity are described. One of the main features of this investigation is the technique of differentiating the resonance signal of the loaded cavity in order to make accurate measurements of the resonant frequency and half-power point frequencies.
Date: May 1973
Creator: Freeman, Ronald Harold
System: The UNT Digital Library
Dielectric Relaxation of Aqueous Solutions at Microwave Frequencies for 335 GHz. Using a Loaded Microwave Cavity Operating in the TM010 Mode (open access)

Dielectric Relaxation of Aqueous Solutions at Microwave Frequencies for 335 GHz. Using a Loaded Microwave Cavity Operating in the TM010 Mode

The frequency dependence and temperature dependence of the complex dielectric constant of water is of great interest. The temperature dependence of the physical properties of water given in the literature, specific heat, thermal conductivity, electric conductivity, pH, etc. are compared to the a. c. (microwave) and d. c. conductivity of water with a variety of concentration of different substances such as HC1, NaCl, HaS04, etc. When each of these properties is plotted versus inverse absolute temperature, it can be seen that each sample shows "transition temperatures". In this work, Slater's perturbation equations for a resonant microwave cavity were used to analyze the experimental results for the microwave data.
Date: August 1994
Creator: Wang, Henry F. S. (Henry Fu-Sen)
System: The UNT Digital Library
Magneto-Optical and Chaotic Electrical Properties of n-InSb (open access)

Magneto-Optical and Chaotic Electrical Properties of n-InSb

This thesis investigation concerns the optical and nonlinear electrical properties of n-InSb. Two specific areas have been studied. First is the magneto-optical study of magneto-donors, and second is the nonlinear dynamic study of nonlinear and chaotic oscillations in InSb. The magneto-optical study of InSb provides a physical picture of the magneto-donor levels, which has an important impact on the physical model of nonlinear and chaotic oscillations. Thus, the subjects discussed in this thesis connect the discipline of semiconductor physics with the field of nonlinear dynamics.
Date: December 1991
Creator: Song, Xiang-Ning
System: The UNT Digital Library
Accelerator Mass Spectrometry Studies of Highly Charged Molecular Ions (open access)

Accelerator Mass Spectrometry Studies of Highly Charged Molecular Ions

The existence of singly, doubly, and triply charged diatomic molecular ions was observed by using an Accelerator Mass Spectrometry (AMS) technique. The mean lifetimes of 3 MeV boron diatomic molecular ions were measured. No isotopic effects on the mean lifetimes of boron diatomic molecules were observed for charge state 3+. Also, the mean lifetime of SiF^3+ was measured.
Date: December 1994
Creator: Kim, Yong-Dal
System: The UNT Digital Library
Scanning Tunneling Microscopy of Epitaxial Diamond (110) and (111) Films and Field Emission Properties of Diamond Coated Molybdenum Microtips (open access)

Scanning Tunneling Microscopy of Epitaxial Diamond (110) and (111) Films and Field Emission Properties of Diamond Coated Molybdenum Microtips

The growth mechanism of chemical vapor deposition (CVD) grown homo-epitaxial diamond (110) and (111) films was studied using ultrahigh vacuum (UHV) scanning tunneling microscopy (STM). In addition, the field emission properties of diamond coated molybdenum microtips were studied as a function of exposure to different gases.
Date: May 1998
Creator: Lim, Seong-Chu
System: The UNT Digital Library
Zinc Oxide Nanoparticles for Nonlinear Bioimaging, Cell Detection and Selective Cell Destruction (open access)

Zinc Oxide Nanoparticles for Nonlinear Bioimaging, Cell Detection and Selective Cell Destruction

Light matter interactions have led to a great part of our current understanding of the universe. When light interacts with matter it affects the properties of both the light and the matter. Visible light, being in the region that the human eye can "see," was one of the first natural phenomenon we used to learn about our universe. The application of fundamental physics research has spilled over into other fields that were traditionally separated from physics, being considered two different sciences. Current physics research has applications in all scientific fields. By taking a more physical approach to problems in fields such as chemistry and biology, we have furthered our knowledge of both. Nanocrystals have many interesting optical properties. Furthermore, the size and properties of nanocrystals has given them applications in materials ranging from solar cells to sunscreens. By understanding and controlling their interactions with systems we can utilize them to increase our knowledge in other fields of science, such as biology. Nanocrystals exhibit optical properties superior to currently used fluorescent dyes. By replacing molecular dyes with nanoparticles we can reduce toxicity, increase resolution and have better cellular targeting abilities. They have also shown to have toxicity to cancer and antibacterial …
Date: May 2013
Creator: Urban, Ben E.
System: The UNT Digital Library
Criticality in Cooperative Systems (open access)

Criticality in Cooperative Systems

Cooperative behavior arises from the interactions of single units that globally produce a complex dynamics in which the system acts as a whole. As an archetype I refer to a flock of birds. As a result of cooperation the whole flock gets special abilities that the single individuals would not have if they were alone. This research work led to the discovery that the function of a flock, and more in general, that of cooperative systems, surprisingly rests on the occurrence of organizational collapses. In this study, I used cooperative systems based on self-propelled particle models (the flock models) which have been proved to be virtually equivalent to sociological network models mimicking the decision making processes (the decision making model). The critical region is an intermediate condition between a highly disordered state and a strong ordered one. At criticality the waiting times distribution density between two consecutive collapses shows an inverse power law form with an anomalous statistical behavior. The scientific evidences are based on measures of information theory, correlation in time and space, and fluctuation statistical analysis. In order to prove the benefit for a system to live at criticality, I made a flock system interact with another similar …
Date: May 2012
Creator: Vanni, Fabio
System: The UNT Digital Library
A New Approach for Transition Metal Free Magnetic Sic: Defect Induced Magnetism After Self-ion Implantation (open access)

A New Approach for Transition Metal Free Magnetic Sic: Defect Induced Magnetism After Self-ion Implantation

SiC has become an attractive wide bandgap semiconductor due to its unique physical and electronic properties and is widely used in high temperature, high frequency, high power and radiation resistant applications. SiC has been used as an alternative to Si in harsh environments such as in the oil industry, nuclear power systems, aeronautical, and space applications. SiC is also known for its polytypism and among them 3C-SiC, 4H-SiC and 6H-SiC are the most common polytypes used for research purposes. Among these polytypes 4H-SiC is gaining importance due to its easy commercial availability with a large bandgap of 3.26 eV at room temperature. Controlled creation of defects in materials is an approach to modify the electronic properties in a way that new functionality may result. SiC is a promising candidate for defect-induced magnetism on which spintronic devices could be developed. The defects considered are of room temperature stable vacancy types, eliminating the need for magnetic impurities, which easily diffuse at room temperature. Impurity free vacancy type defects can be created by implanting the host atoms of silicon or carbon. The implantation fluence determines the defect density, which is a critical parameter for defect induced magnetism. Therefore, we have studied the influence …
Date: May 2013
Creator: Kummari, Venkata Chandra Sekhar
System: The UNT Digital Library

Microwave Cavity Test for Superconductivity

Access: Use of this item is restricted to the UNT Community
The first part of this paper describes the Meissner effect in superconductors which serves as the most definitive evidence for superconductivity. It is shown that the microwave perturbation technique may be used to demonstrate this effect. By measuring the changes of resonant frequency and inverse quality factor Q of a microwave cavity with a small volume of sample loading, the Meissner effect can be shown by using the Slater perturbation equation. The experimental system is described with details and the basic principle of each component discussed. The second part of this work describes the technique employed to do the actual measurements. The experiments were conducted on samples of Gallium Arsenide (GaAs) and lead zirconate titanate (PZT) to look for the possible high temperature superconductivity properties. Results of these experiments are presented and discussed. Conclusion and suggestions to future exploration are made.
Date: December 2001
Creator: Tang, Shan
System: The UNT Digital Library

The Stopping of Energetic Si, P and S Ions in Ni, Cu, Ge and GaAs Targets

Access: Use of this item is restricted to the UNT Community
Accurate knowledge of stopping powers is essential for these for quantitative analysis and surface characterization of thin films using ion beam analysis (IBA). These values are also of interest in radiobiology and radiotherapy, and in ion- implantation technology where shrinking feature sizes puts high demands on the accuracy of range calculations. A theory that predicts stopping powers and ranges for all projectile-target combinations is needed. The most important database used to report the stopping powers is the SRIM/TRIM program developed by Ziegler and coworkers. However, other researchers report that at times, these values differ significantly from experimental values. In this study the stopping powers of Si, P and S ions have been measured in Ni, Cu, Ge and GaAs absorbers in the energy range ~ 2-10 MeV. For elemental films of Ni, Cu and Ge, the stopping of heavy ions was measured using a novel ERD (Elastic Recoil Detection) based technique. In which an elastically recoiled lighter atom is used to indirectly measure the energy of the incoming heavy ion using a surface barrier detector. In this way it was possible to reduce the damage and to improve the FWHM of the detector. The results were compared to SRIM-2000 predictions …
Date: December 2001
Creator: Nigam, Mohit
System: The UNT Digital Library