Non-Isothermal Laser Treatment of Fe-Si-B Metallic Glass (open access)

Non-Isothermal Laser Treatment of Fe-Si-B Metallic Glass

Metallic glasses possess attractive properties, such as high strength, good corrosion resistance, and superior soft magnetic performance. They also serve as precursors for synthesizing nanocrystalline materials. In addition, a new class of composites having crystalline phases embedded in amorphous matrix is evolving based on selective crystallization of metallic glasses. Therefore, crystallization of metallic glasses and its effects on properties has been a subject of interest. Previous investigations from our research group related to laser assisted crystallization of Fe-Si-B metallic glass (an excellent soft magnetic material by itself) showed a further improvement in soft magnetic performance. However, a fundamental understanding of crystallization and mechanical performance of laser treated metallic glass was essential from application point of view. In light of this, the current work employed an integrated experimental and computational approach to understand crystallization and its effects on tensile behavior of laser treated Fe-Si-B metallic glass. The time temperature cycles during laser treatments were predicted using a finite element thermal model. Structural changes in laser treated Fe-Si-B metallic glass including crystallization and phase evolution were investigated with the aid of X-ray diffraction, differential scanning calorimetry, resistivity measurements, and transmission electron microscopy. The mechanical behavior was evaluated by uniaxial tensile tests with …
Date: December 2017
Creator: Joshi, Sameehan Shrikant
System: The UNT Digital Library
Modeling of High Strain Rate Compression of Austenitic Shape Memory Alloys (open access)

Modeling of High Strain Rate Compression of Austenitic Shape Memory Alloys

Shape memory alloys (SMAs) exhibit the ability to absorb large dynamic loads and, therefore, are excellent candidates for structural components where impact loading is expected. Compared to the large amount of research on the shape memory effect and/or pseudoelasticity of polycrystalline SMAs under quasi-static loading conditions, studies on dynamic loading are limited. Experimental research shows an apparent difference between the quasi-static and high strain rate deformation of SMAs. Research reveals that the martensitic phase transformation is strain rate sensitive. The mechanism for the martensitic phase transformation in SMAs during high strain rate deformation is still unclear. Many of the existing high strain rate models assume that the latent heat generated during deformation contributes to the change in the stress-strain behavior during dynamic loading, which is insufficient to explain the large stress observed during phase transformation under high strain rate deformation. Meanwhile, the relationship between the phase front velocity and strain rate has been studied. In this dissertation, a new resistance to phase transformation during high strain rate deformation is discussed and the relationship between the driving force for phase transformation and phase front velocity is established. With consideration of the newly defined resistance to phase transformation, a new model for …
Date: December 2017
Creator: Yu, Hao
System: The UNT Digital Library
Effects of HALSs and Nano-ZnO Worked as UV Stabilizers of Polypropylene (open access)

Effects of HALSs and Nano-ZnO Worked as UV Stabilizers of Polypropylene

This work reports the outdoor weathering performance of ultraviolet (UV)-stabilized polypropylene (PP) products (using PP resins from Encore Wire). Different hindered amine light stabilizers (HALSs) and nano-ZnO were used to stabilize PP-film-based formulations that were exposed under UV light for 6 weeks simulating for in harsh outdoor weather of Dallas, Texas, USA in 2016. Characterization of the exposed PP film products was done in terms of mechanical and friction spectroscopic properties. The PP film formulations were divided into 15 categories based on the type of HALS and nano-ZnO incorporated. This was done to derive meaningful comparison of the various film formulations. Following exposure under UV light, the lifetimes of certain formulations were determined. On the basis of the mechanical and friction properties, it was determined that generally, the HALS or nano-ZnO stabilized PP film give better properties and if those two kinds of UV stabilizers can work together.
Date: December 2017
Creator: Lu, Xinyao
System: The UNT Digital Library
A Study of Mechanisms to Engineer Fine Scale Alpha Phase Precipitation in Beta Titanium Alloy, Beta 21S (open access)

A Study of Mechanisms to Engineer Fine Scale Alpha Phase Precipitation in Beta Titanium Alloy, Beta 21S

Metastable b-Ti alloys are titanium alloys with sufficient b stabilizer alloying additions such that it's possible to retain single b phase at room temperature. These alloys are of great advantage compared to a/b alloys since they are easily cold rolled, strip produced and can attain excellent mechanical properties upon age hardening. Beta 21S, a relatively new b titanium alloy in addition to these general advantages is known to possess excellent oxidation and corrosion resistance at elevated temperatures. A homogeneous distribution of fine sized a precipitates in the parent b matrix is known to provide good combination of strength, ductility and fracture toughness. The current work focuses on a study of different mechanisms to engineer homogeneously distributed fine sized a precipitates in the b matrix. The precipitation of metastable phases upon low temperature aging and their influence on a precipitation is studied in detail. The precipitation sequence on direct aging above the w solvus temperature is also assessed. The structural and compositional evolution of precipitate phase is determined using multiple characterization tools. The possibility of occurrence of other non-classical precipitation mechanisms that do not require heterogeneous nucleation sites are also analyzed. Lastly, the influence of interstitial element, oxygen on a precipitation …
Date: August 2013
Creator: Behera, Amit Kishan
System: The UNT Digital Library
Effect of Retting on Surface Chemistry and Mechanical Performance Interactions in Natural Fibers for High Performance Polymer Composites (open access)

Effect of Retting on Surface Chemistry and Mechanical Performance Interactions in Natural Fibers for High Performance Polymer Composites

Sustainability through replacement of non-renewable fibers with renewable fibers is an ecological need. Impact of transportation costs from South-east Asia on the life cycle analysis of the composite is detrimental. Kenaf is an easily grown crop in America. Farm based processing involves placing the harvested crop in rivers and ponds, where retting of the fibers from the plant (separation into fibers) can take 2 weeks or more. The objective of this thesis is to analyze industrially viable processes for generating fibers and examine their synergistic impact on mechanical performance, surface topography and chemistry for functional composites. Comparison has been made with commercial and conventional retting process, including alkali retting, enzymatic retting, retting in river and pond water (retting occurs by natural microbial population) with controlled microbial retting. The resulting kenaf fibers were characterized by dynamic mechanical analysis (DMA), Raman spectroscopy (FT-Raman), Fourier transform infrared spectroscopy (FT-IR), polarized optical microscopy (POM), X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy (SEM) optical fluorescence microscopy, atomic force microscopy (AFM) and carbohydrate analysis. DMA results showed that pectinase and microbe treated fibers have superior viscoelastic properties compared to alkali retting. XPS, Raman, FT-IR and biochemical analysis indicated that the controlled microbial and pectinase retting was …
Date: May 2013
Creator: Ramesh, Dinesh
System: The UNT Digital Library
Solid Lubrication Mechanisms in Laser Deposited Nickel-titanium-carbon Metal Matrix Composites (open access)

Solid Lubrication Mechanisms in Laser Deposited Nickel-titanium-carbon Metal Matrix Composites

A Ni/TiC/C metal matrix composite (MMC) has been processed using the laser engineered net shaping (LENS) process from commercially available powders with a Ni-3Ti-20C (atomic %) composition. This processing route produces the in-situ formation of homogeneously distributed eutectic and primary titanium carbide and graphite precipitates throughout the Ni matrix. The composite exhibits promising tribological properties when tested in dry sliding conditions with a low steady state coefficient of friction (CoF) of ~0.1 and lower wear rates in comparison to LENS deposited pure Ni. The as deposited and tribologically worn composite has been characterized using Auger electron spectroscopy, scanning electron microscopy (SEM), X-ray diffraction, high resolution transmission electron microscopy (HRTEM) with energy dispersive spectroscopy (EDS), dual beam focused ion beam SEM (FIB/SEM) serial sectioning and Vickers micro-hardness testing. The evolution of subsurface stress states and precipitate motion during repeated sliding contact has been investigated using finite element analysis (FEA). The results of FIB/SEM serial sectioning, HRTEM, and Auger electron spectroscopy in conjunction with FEA simulations reveal that the improved tribological behavior is due to the in-situ formation of a low interfacial shear strength amorphous carbon tribofilm that is extruded to the surface via refined Ni grain boundaries.
Date: December 2012
Creator: Mogonye, Jon-Erik
System: The UNT Digital Library
Interspecimen Study of Bone to Relate Macromechanical, Nanomechanical and Compositional Changes Across the Femoral Cortex of Bone (open access)

Interspecimen Study of Bone to Relate Macromechanical, Nanomechanical and Compositional Changes Across the Femoral Cortex of Bone

Mechanics of bone is widely studied and researched, mainly for the study of fracture. This has been done mostly on a macro scale. In this work hierarchical nature of bone has been explored to investigate bone mechanics in more detail. Flexural test were done to classify the bones according to their strength and deflection. Raman spectroscopy analysis was done to map the mineralization, collagen crosslinking changes across the thickness of the bone. Nanoindentation was done to map indentation hardness and indentation modulus across femoral cortex of the bone. The results indicate that the composition of the bone changes across the thickness of the femoral cortex. The hypothesis is confirmed as increase in mineralization, carbonate to phosphate ratio and collagen crosslinking shows the effect as increased indentation hardness and modulus and decreased deflection.
Date: May 2013
Creator: Nar, Mangesh
System: The UNT Digital Library
Device Engineering for Enhanced Efficiency from Platinum(II) Phosphorescent OLEDs (open access)

Device Engineering for Enhanced Efficiency from Platinum(II) Phosphorescent OLEDs

Phosphorescent organic light emitting diodes (PHOLEDs) based on efficient electrophosphorescent dopant, platinum(II)-pyridyltriazolate complex, bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II) (Pt(ptp)2) have been studied and improved with respect to power efficiency, external efficiency, chromacity and efficiency roll-off. By studying the electrical and optical behavior of the doped devices and functionality of the various constituent layers, devices with a maximum EQE of 20.8±0.2 % and power efficiency of 45.1±0.9 lm/W (77lm/W with luminaries) have been engineered. This improvement compares to devices whose emission initially could only be detected by a photomultiplier tube in a darkened environment. These devices consisted of a 65 % bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II) (Pt(ptp)2) doped into 4,4'-bis(carbazol-9-yl)triphenylamine (CBP) an EML layer, a hole transporting layer/electron blocker of 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC), an electron transport layer of 1,3,5-tris(phenyl-2-benzimidazolyl)-benzene (TPBI), and a LiF/Al cathode. These devices show the acceptable range for warm white light quadrants and qualify to be called "warm white" even w/o adding another emissive layer. Dual EML devices composed of neat Pt(ptp)2 films emitting orange and CBP: Pt(ptp)2 film emitting blue-green produced a color rendering index (CRI) of 59 and color coordinates (CIE) of (0.47,0.49) at 1000Cd/m² with power efficiency of 12.6±0.2 lm/W and EQE of 10.8±0.2 %. Devices with two blue fluorescent emission layers as singlet …
Date: August 2010
Creator: Li, Minghang
System: The UNT Digital Library
Atomistic Studies of Point Defect Migration Rates in the Iron-Chromium System (open access)

Atomistic Studies of Point Defect Migration Rates in the Iron-Chromium System

Generation and migration of helium and other point defects under irradiation causes ferritic steels based on the Fe-Cr system to age and fail. This is motivation to study point defect migration and the He equation of state using atomistic simulations due to the steels' use in future reactors. A new potential for the Fe-Cr-He system developed by collaborators at the Lawrence Livermore National Laboratory was validated using published experimental data. The results for the He equation of state agree well with experimental data. The activation energies for the migration of He- and Fe-interstitials in varying compositions of Fe-Cr lattices agree well with prior work. This research did not find a strong correlation between lattice ordering and interstitial migration energy
Date: August 2010
Creator: Hetherly, Jeffery
System: The UNT Digital Library
Carrier Mobility, Charge Trapping Effects on the Efficiency of Heavily Doped Organic Light-Emitting Diodes, and EU(lll) Based Red OLEDs (open access)

Carrier Mobility, Charge Trapping Effects on the Efficiency of Heavily Doped Organic Light-Emitting Diodes, and EU(lll) Based Red OLEDs

Transient electroluminescence (EL) was used to measure the onset of emission delay in OLEDs based on transition metal, phosphorescent bis[3,5-bis(2-pyridyl)-1,2,4-triazolato] platinum(ΙΙ) and rare earth, phosphorescent Eu(hfa)3 with 4'-(p-tolyl)-2,2":6',2" terpyridine (ttrpy) doped into 4,4'-bis(carbazol-9-yl) triphenylamine (CBP), from which the carrier mobility was determined. For the Pt(ptp)2 doped CBP films in OLEDs with the structure: ITO/NPB (40nm)/mcp (10nm)/65% Pt(ptp)2:CBP (25nm)/TPBI (30nm)/Mg:Ag (100nm), where NPB=N, N'-bis(1-naphthyl)-N-N'-biphenyl-1, 1'-biphenyl-4, MCP= N, N'-dicarbazolyl-3,5-benzene, TPBI=1,3,5-tris(phenyl-2-benzimidazolyl)-benzene, delayed recombination was observed and based on its dependence on frequency and duty cycle, ascribed to trapping and de-trapping processes at the interface of the emissive layer and electron blocker. The result suggests that the exciton recombination zone is at, or close to the interface between the emissive layer and electron blocker. The lifetime of the thin films of phosphorescent emitter Pt(ptp)2 were studied for comparison with rare earth emitter Eu(hfa)3. The lifetime of 65% Pt(ptp)2:CBP co-film was around 638 nanoseconds at the emission peak of 572nm, and the lifetime of neat Eu(hfa)3 film was obtained around 1 millisecond at 616 nm, which supports the enhanced efficiency obtained from the Pt(ptp)2 devices. The long lifetime and narrow emission of the rare earth dopant Eu(hfa)3 is a fundamental factor limiting device performance. Red …
Date: August 2010
Creator: Lin, Ming-Te
System: The UNT Digital Library
Surface Engineering and Characterization of Laser Deposited Metallic Biomaterials (open access)

Surface Engineering and Characterization of Laser Deposited Metallic Biomaterials

Novel net shaping technique Laser Engineered Net shaping™ (LENS) laser based manufacturing solution (Sandia Corp., Albuquerque, NM); Laser can be used to deposit orthopedic implant alloys. Ti-35Nb-7Zr-5Ta (TNZT) alloy system was deposited using LENS. The corrosion resistance being an important prerequisite was tested electrochemically and was found that the LENS deposited TNZT was better than conventionally used Ti-6Al-4V in 0.1N HCl and a simulated body solution. A detailed analysis of the corrosion product exhibited the presence of complex oxides which are responsible for the excellent corrosion resistance. In addition, the in vitro tests done on LENS deposited TNZT showed that they have excellent biocompatibility. In order to improve the wear resistance of the TNZT system boride reinforcements were carried out in the matrix using LENS processing. The tribological response of the metal matrix composites was studied under different conditions and compared with Ti-6Al-4V. Usage of Si3N4 balls as a counterpart in the wear studies showed that there is boride pullout resulting in third body abrasive wear with higher coefficient of friction (COF). Using 440C stainless steel balls drastically improved the COF of as deposited TNZT+2B and seemed to eliminate the effect of “three body abrasive wear,” and also exhibited superior …
Date: May 2007
Creator: Samuel, Sonia
System: The UNT Digital Library
Bulk and Interfacial Effects on Density in Polymer Nanocomposites (open access)

Bulk and Interfacial Effects on Density in Polymer Nanocomposites

The barrier properties of polymers are a significant factor in determining the shelf or device lifetime in polymer packaging. Nanocomposites developed from the dispersion of nanometer thick platelets into a host polymer matrix have shown much promise. The magnitude of the benefit on permeability has been different depending on the polymer investigated or the degree of dispersion of the platelet in the polymer. In this dissertation, the effect of density changes in the bulk and at the polymer-platelet interface on permeability of polymer nanocomposites is investigated. Nanocomposites of nylon, PET, and PEN were processed by extrusion. Montmorillonite layered silicate (MLS) in a range of concentrations from 1 to 5% was blended with all three resins. Dispersion of the MLS in the matrix was investigated by using one or a combination of X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Variation in bulk density via crystallization was analyzed using differential scanning calorimetry (DSC) and polarized optical microscopy. Interfacial densification was investigated using force modulation atomic force microscopy (AFM) and ellipsometry. Mechanical properties are reported. Permeability of all films was measured in an in-house built permeability measurement system. The effect of polymer orientation and induced defects on permeability …
Date: May 2007
Creator: Sahu, Laxmi Kumari
System: The UNT Digital Library
Amorphization and De-vitrification in Immiscible Copper-Niobium Alloy Thin Films (open access)

Amorphization and De-vitrification in Immiscible Copper-Niobium Alloy Thin Films

While amorphous phases have been reported in immiscible alloy systems, there is still some controversy regarding the reason for the stabilization of these unusual amorphous phases. Direct evidence of nanoscale phase separation within the amorphous phase forming in immiscible Cu-Nb alloy thin films using 3D atom probe tomography has been presented. This evidence clearly indicates that the nanoscale phase separation is responsible for the stabilization of the amorphous phase in such immiscible systems since it substantially reduces the free energy of the undercooled liquid (or amorphous) phase, below that of the competing supersaturated crystalline phases. The devitrification of the immiscible Cu-Nb thin film of composition Cu-45% Nb has been studied in detail with the discussion on the mechanism of phase transformation. The initial phase separation in the amorphous condition seems to play a vital role in the crystallization of the thin film. Detailed analysis has been done using X-ray diffraction, transmission electron microscopy and 3D atom probe tomography.
Date: May 2007
Creator: Puthucode Balakrishnan, Anantharamakrishnan
System: The UNT Digital Library
Effects of Plasma, Temperature and Chemical Reactions on Porous Low Dielectric Films for Semiconductor Devices (open access)

Effects of Plasma, Temperature and Chemical Reactions on Porous Low Dielectric Films for Semiconductor Devices

Low-dielectric (k) films are one of the performance drivers for continued scaling of integrated circuit devices. These films are needed in microelectronic device interconnects to lower power consumption and minimize cross talk between metal lines that "interconnect" transistors. Low-k materials currently in production for the 45 and 65 nm node are most often organosilicate glasses (OSG) with dielectric constants near 2.8 and nominal porosities of 8-10%. The next generation of low-k materials will require k values 2.6 and below for the 45 nm device generation and beyond. The continuous decrease in device dimensions in ultra large scale integrated (ULSI) circuits have brought about the replacement of the silicon dioxide interconnect dielectric (ILD), which has a dielectric constant (k) of approximately 4.1, with low dielectric constant materials. Lowering the dielectric constant reduces the propagation delays, RC constant (R = the resistance of the metal lines; C = the line capacitance), and metal cross-talk between wires. In order to reduce the RC constants, a number of low-k materials have been studied for use as intermetal dielectrics. The k values of these dielectric materials can be lowered by replacing oxide films with carbon-based polymer films, incorporating hydrocarbon functional groups into oxide films (SiOCH …
Date: December 2010
Creator: Osei-Yiadom, Eric
System: The UNT Digital Library
Growth, Structure and Tribological Properties of Atomic Layer Deposited Lubricious Oxide Nanolaminates (open access)

Growth, Structure and Tribological Properties of Atomic Layer Deposited Lubricious Oxide Nanolaminates

Friction and wear mitigation is typically accomplished by introducing a shear accommodating layer (e.g., a thin film of liquid) between surfaces in sliding and/or rolling contacts. When the operating conditions are beyond the liquid realm, attention turns to solid coatings. Solid lubricants have been widely used in governmental and industrial applications for mitigation of wear and friction (tribological properties). Conventional examples of solid lubricants are MoS2, WS2, h-BN, and graphite; however, these and some others mostly perform best only for a limited range of operating conditions, e.g. ambient air versus dry nitrogen and room temperature versus high temperatures. Conversely, lubricious oxides have been studied lately as good potential candidates for solid lubricants because they are thermodynamically stable and environmentally robust. Oxide surfaces are generally inert and typically do not form strong adhesive bonds like metals/alloys in tribological contacts. Typical of these oxides is ZnO. The interest in ZnO is due to its potential for utility in a variety of applications. To this end, nanolaminates of ZnO, Al2O3, ZrO2 thin films have been deposited at varying sequences and thicknesses on silicon substrates and high temperature (M50) bearing steels by atomic layer deposition (ALD). The top lubricious, nanocrystalline ZnO layer was structurally-engineered …
Date: December 2010
Creator: Mensah, Benedict Anyamesem
System: The UNT Digital Library
Microstructure Evolution in Laser Deposited Nickel-Titanium-Carbon in situ Metal Matrix Composite (open access)

Microstructure Evolution in Laser Deposited Nickel-Titanium-Carbon in situ Metal Matrix Composite

Ni/TiC metal matrix composites have been processed using the laser engineered net shaping (LENS) process. As nickel does not form an equilibrium carbide phase, addition of a strong carbide former in the form of titanium reinforces the nickel matrix resulting in a promising hybrid material for both surface engineering as well as high temperature structural applications. Changing the relative amounts of titanium and carbon in the nickel matrix, relatively low volume fraction of refined homogeneously distributed carbide precipitates, formation of in-situ carbide precipitates and the microstructural changes are investigated. The composites have been characterized in detail using x-ray diffraction, scanning electron microscopy (including energy dispersive spectroscopy (XEDS) mapping and electron backscatter diffraction (EBSD)), Auger electron spectroscopy, and transmission (including high resolution) electron microscopy. Both primary and eutectic titanium carbides, observed in this composite, exhibited the fcc-TiC structure (NaCl-type). Details of the orientation relationship between Ni and TiC have been studied using SEM-EBSD and high resolution TEM. The results of micro-hardness and tribology tests indicate that these composites have a relatively high hardness and a steady-state friction coefficient of ~0.5, both of which are improvements in comparison to LENS deposited pure Ni.
Date: December 2010
Creator: Gopagoni, Sundeep
System: The UNT Digital Library
Dynamic Precipitation of Second Phase Under Deformed Condition in Mg-nd Based Alloy (open access)

Dynamic Precipitation of Second Phase Under Deformed Condition in Mg-nd Based Alloy

Magnesium alloys are the lightweight structural materials with high strength to weigh ratio that permits their application in fuel economy sensitive automobile industries. Among the several flavors of of Mg-alloys, precipitation hardenable Mg-rare earth (RE) based alloys have shown good potential due to their favorable creep resistance within a wide window of operating temperatures ranging from 150°C to 300°C. A key aspect of Mg-RE alloys is the presence of precipitate phases that leads to strengthening of such alloys. Several notable works, in literature, have been done to examine the formation of such precipitate phases. However, there are very few studies that evaluated the effect stress induced deformation on the precipitation in Mg-RE alloys. Therefore, the objective of this work is to examine influence of deformation on the precipitation of Mg-Nd based alloys. To address this problem, precipitation in two Mg-Nd based alloys, subjected to two different deformation conditions, and was examined via transmission electron microscopy (TEM) and atom probe tomography (APT). In first deformation condition, Md-2.6wt%Nd alloy was subjected to creep deformation (90MPa / 177ºC) to failure. Effect of stress-induced deformation was examined by comparing and contrasting with precipitation in non-creep tested specimens subjected to isothermal annealing (at 177ºC). In …
Date: December 2013
Creator: Dendge, Nilesh Bajirao
System: The UNT Digital Library
Tribological Behavior of Spark Plasma Sintered Tic/graphite/nickel Composites and Cobalt Alloys (open access)

Tribological Behavior of Spark Plasma Sintered Tic/graphite/nickel Composites and Cobalt Alloys

Monolithic composites are needed that combine low friction and wear, high mechanical hardness, and high fracture toughness. Thin films and coatings are often unable to meet this engineering challenge as they can delaminate and fracture during operation ceasing to provide beneficial properties during service life. Two material systems were synthesized by spark plasma sintering (SPS) and were studied for their ability to meet these criteria. A dual hybrid composite was fabricated and consisted of a nickel matrix for fracture toughness, TiC for hardness and graphite for solid/self‐lubrication. An in‐situ reaction during processing resulted in the formation of TiC from elemental Ti and C powders. The composition was varied to determine its effects on tribological behavior. Stellite 21, a cobalt‐chrome‐molybdenum alloy, was also produced by SPS. Stellite 21 has low stacking fault energy and a hexagonal phase which forms during sliding that both contribute to low interfacial shear and friction. Samples were investigated by x‐ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x‐ray spectroscopy (EDS), and electron back‐scattered diffraction (EBSD). Tribological properties were characterized by pin on disc tribometry and wear rates were determined by profilometry and abrasion testing. Solid/self‐lubrication in the TiC/C/Ni system was investigated by Raman and Auger …
Date: December 2013
Creator: Kinkenon, Douglas
System: The UNT Digital Library
Laser Surface Modification on Az31b Mg Alloy for Bio-wettability (open access)

Laser Surface Modification on Az31b Mg Alloy for Bio-wettability

Laser surface modification of AZ31B Magnesium alloy changes surface composition and roughness to provide improved surface bio-wettability. Laser processing resulted in phase transformation and grain refinement due to rapid quenching effect. Furthermore, instantaneous heating and vaporization resulted in removal of material, leading the textured surface generation. A study was conducted on a continuum-wave diode-pumped ytterbium laser to create multiple tracks for determining the resulting bio-wettability. Five different laser input powers were processed on Mg alloy, and then examined by XRD, SEM, optical profilometer, and contact angle measurement. A finite element based heat transfer model was developed using COMSOL multi-physics package to predict the temperature evolution during laser processing. The thermal histories predicted by the model are used to evaluate the cooling rates and solidification rate and the associated changes in the microstructure. The surface energy of laser surface modification samples can be calculated by measuring the contact angle with 3 different standard liquid (D.I water, Formamide, and 1-Bromonaphthalen). The bio-wettability of the laser surface modification samples can be conducted by simulated body fluid contact angle measurement. The results of SEM, 3D morphology, XRD, and contact angle measurement show that the grain size and roughness play role for wetting behavior of …
Date: December 2013
Creator: Ho, YeeHsien
System: The UNT Digital Library
Surface Modifications to Enhance the Wear Resistance and the Osseo-integration Properties of Biomedical Ti-alloy (open access)

Surface Modifications to Enhance the Wear Resistance and the Osseo-integration Properties of Biomedical Ti-alloy

The current study focuses on improving the wear resistance of femoral head component and enhancing the osseo-integration properties of femoral stem component of a hip implant made of a new generation low modulus alloy, Ti-35Nb-7Zr-5Ta or TNZT. Different techniques that were adopted to improve the wear resistance of low-modulus TNZT alloy included; (a) fabrication of graded TNZT-xB (x= 0, 1, 2 wt%) samples using LENS, (b) oxidation, and (c) LASER nitriding of TNZT. TNZT-1B and TNZT-O samples have shown improved wear resistance when tested against UHMWPE ball in SBF medium. A new class of bio-ceramic coatings based on calcium phosphate (CaP), was applied on the TNZT sample surface and was further laser processed with the objective of enhancing their osseo-integration properties. With optimized LASER parameters, TNZT-CaP samples have shown improved corrosion resistance, surface wettability and cellular response when compared to the base TNZT sample.
Date: August 2013
Creator: Kami, Pavani
System: The UNT Digital Library
Dislocation Dynamics Simulations of Plasticity in Cu Thin Films (open access)

Dislocation Dynamics Simulations of Plasticity in Cu Thin Films

Strong size effects in plastic deformation of thin films have been experimentally observed, indicating non-traditional deformation mechanisms. These observations require improved understanding of the behavior of dislocation in small size materials, as they are the primary plastic deformation carrier. Dislocation dynamics (DD) is a computational method that is capable of directly simulating the motion and interaction of dislocations in crystalline materials. This provides a convenient approach to study micro plasticity in thin films. While two-dimensional dislocation dynamics simulation in thin film proved that the size effect fits Hall-Petch equation very well, there are issues related to three-dimensional size effects. In this work, three-dimensional dislocation dynamics simulations are used to study model cooper thin film deformation. Grain boundary is modeled as impenetrable obstacle to dislocation motion in this work. Both tension and cyclic loadings are applied and a wide range of size and geometry of thin films are studied. The results not only compare well with experimentally observed size effects on thin film strength, but also provide many details on dislocation processes in thin films, which could greatly help formulate new mechanisms of dislocation-based plasticity.
Date: August 2013
Creator: Wu, Han
System: The UNT Digital Library
Processing and Characterization of Nickel-Carbon Base Metal Matrix Composites (open access)

Processing and Characterization of Nickel-Carbon Base Metal Matrix Composites

Carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) are attractive reinforcements for lightweight and high strength metal matrix composites due to their excellent mechanical and physical properties. The present work is an attempt towards investigating the effect of CNT and GNP reinforcements on the mechanical properties of nickel matrix composites. The CNT/Ni (dry milled) nanocomposites exhibiting a tensile yield strength of 350 MPa (about two times that of SPS processed monolithic nickel ~ 160 MPa) and an elongation to failure ~ 30%. In contrast, CNT/Ni (molecular level mixed) exhibited substantially higher tensile yield strength (~ 690 MPa) but limited ductility with an elongation to failure ~ 8%. The Ni-1vol%GNP (dry milled) nanocomposite exhibited the best balance of properties in terms of strength and ductility. The enhancement in the tensile strength (i.e. 370 MPa) and substantial ductility (~40%) of Ni-1vol%GNP nanocomposites was achieved due to the combined effects of grain refinement, homogeneous dispersion of GNPs in the nickel matrix, and well-bonded Ni-GNP interface, which effectively transfers stress across metal-GNP interface during tensile deformation. A second emphasis of this work was on the detailed 3D microstructural characterization of a new class of Ni-Ti-C based metal matrix composites, developed using the laser engineered net …
Date: May 2014
Creator: Borkar, Tushar Murlidhar
System: The UNT Digital Library
Laser Deposition, Heat-treatment, and Characterization of the Binary Ti-xmn System (open access)

Laser Deposition, Heat-treatment, and Characterization of the Binary Ti-xmn System

The present research seeks to characterization of an additively manufactured and heat-treated Ti-xMn gradient alloy, a binary system that has largely been unexplored. In order to rapidly assess this binary system, compositionally graded Ti-xMn (0<x<15 wt%) specimens were fabricated using the LENS (Laser Engineered Net Shaping) and were subsequently heat-treated and characterized using a wide range of techniques. Microstructural changes with respect to the change in thermal treatments, hardness and chemical composition were observed and will be presented. These include assessments of both continuous cooling, leading to observations of both equilibrium and metastable phases, including the titanium martensites, and to direct aging studies looking for composition regimes that produce highly refined alpha precipitates – a subject of great interest given recent understandings of non-classical nucleation and growth mechanisms. The samples were characterized using SEM, EDS, TEM, and XRD and the properties probed using a Vickers Microhardness tester.
Date: August 2013
Creator: Avasarala, Chandana
System: The UNT Digital Library
Design Principle on Carbon Nanomaterials Electrocatalysts for Energy Storage and Conversion (open access)

Design Principle on Carbon Nanomaterials Electrocatalysts for Energy Storage and Conversion

We are facing an energy crisis because of the limitation of the fossil fuel and the pollution caused by burning it. Clean energy technologies, such as fuel cells and metal-air batteries, are studied extensively because of this high efficiency and less pollution. Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are essential in the process of energy storage and conversion, and noble metals (e.g. Pt) are needed to catalyze the critical chemical reactions in these devices. Functionalized carbon nanomaterials such as heteroatom-doped and molecule-adsorbed graphene can be used as metal-free catalysts to replace the expensive and scarce platinum-based catalysts for the energy storage and conversion. Traditionally, experimental studies on the catalytic performance of carbon nanomaterials have been conducted extensively, however, there is a lack of computational studies to guide the experiments for rapid search for the best catalysts. In addition, theoretical mechanism and the rational design principle towards ORR and OER also need to be fully understood. In this dissertation, density functional theory calculations are performed to calculate the thermodynamic and electrochemical properties of heteroatom-doped graphene and molecule-adsorbed graphene for ORR and OER. Gibb's free energy, overpotential, charge transfer and edge effect are evaluated. The charge transfer analysis show …
Date: May 2017
Creator: Zhao, Zhenghang
System: The UNT Digital Library