Degree Level

56 Matching Results

Results open in a new window/tab.

The Effect of Initial Conditions on the Nonlinear Evolution of Perturbed Interfaces Driven by Strong Blast Waves (open access)

The Effect of Initial Conditions on the Nonlinear Evolution of Perturbed Interfaces Driven by Strong Blast Waves

In core-collapse supernovae, strong blast waves drive interfaces susceptible to Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH) instabilities. In addition, perturbation growth can result from material expansion in large-scale velocity gradients behind the shock front. Laser-driven experiments are designed to produce a strongly shocked interface whose evolution is a scaled version of the unstable hydrogen-helium interface in core-collapse supernovae such as SN 1987A. The ultimate goal of this research is to develop an understanding of the effect of hydrodynamic instabilities and the resulting transition to turbulence on supernovae observables that remain as yet unexplained. In this dissertation, we present a computational study of unstable systems driven by high Mach number shock and blast waves. Using multi-physics radiation hydrodynamics codes and theoretical models, we consider the late nonlinear instability evolution of single mode, few mode, and multimode interfaces. We rely primarily on 2D calculations but present recent 3D results as well. For planar multimode systems, we show that compressibility effects preclude the emergence of a regime of self-similar instability growth independent of the initial conditions (IC's) by allowing for memory of the initial conditions to be retained in the mix-width at all times. The loss of transverse spectral information is demonstrated, …
Date: April 27, 2004
Creator: Miles, A
System: The UNT Digital Library
The low temperature properties of (Dy{sub 1-x}Er{sub x})Ni{sub 2} alloys (open access)

The low temperature properties of (Dy{sub 1-x}Er{sub x})Ni{sub 2} alloys

The study of rare earth magnetic properties is undertaken to further the understanding of critical phenomena and the mechanism of magnetic ordering in solids. There is a great variety of magnetic ordering observed in the rare earth compounds, thus providing an insight to phenomena such as heat capacity, magnetostriction and crystal fields. Studies began on the magnetic properties of the rare earths and their compounds in the 1950`s.
Date: July 27, 1994
Creator: Gailloux, M.
System: The UNT Digital Library
Directional solidification of the alumina-zirconia ceramic eutectic system (open access)

Directional solidification of the alumina-zirconia ceramic eutectic system

It is possible to produce alumina-zirconia ceramic samples through existing solidification techniques. The resulting microstructures typically consist of rods of zirconia in an alumina matrix, although a lamellar structure has been noted in some cases. In nearly all cases, colony growth was present which may possibly result from grain size, repeated nucleation events, and lamellar oscillations. In the same vein, it appears that the amount of impurities within the system might be the underlying cause for the colony growth. Colony growth was diminished through impurity control as the higher purity samples exhibited colony free behavior. In addition to colony formations, faceted alumina dendrites or nonfaceted zirconia dendrites may result in the ceramic if the sample is solidified out of the coupled zone. In all cases, for larger-sized Bridgman samples, a lower limit in the eutectic spacing was noted. The solidification model which includes the kinetic effect has been developed, although the effect appears to be negligible under present experimental conditions. A spacing limit might also occur due to the result of heat flow problems. Heat flow out of the ceramic is difficult to control, often causing radial and not axial growth. This behavior is exaggerated in the presence of impurities. …
Date: July 27, 1994
Creator: Boldt, C.
System: The UNT Digital Library
Novel absorption detection techniques for capillary electrophoresis (open access)

Novel absorption detection techniques for capillary electrophoresis

Capillary electrophoresis (CE) has emerged as one of the most versatile separation methods. However, efficient separation is not sufficient unless coupled to adequate detection. The narrow inner diameter (I.D.) of the capillary column raises a big challenge to detection methods. For UV-vis absorption detection, the concentration sensitivity is only at the {mu}M level. Most commercial CE instruments are equipped with incoherent UV-vis lamps. Low-brightness, instability and inefficient coupling of the light source with the capillary limit the further improvement of UV-vis absorption detection in CE. The goals of this research have been to show the utility of laser-based absorption detection. The approaches involve: on-column double-beam laser absorption detection and its application to the detection of small ions and proteins, and absorption detection with the bubble-shaped flow cell.
Date: July 27, 1994
Creator: Xue, Y.
System: The UNT Digital Library
Development of novel separation techniques for biological samples in capillary electrophoresis (open access)

Development of novel separation techniques for biological samples in capillary electrophoresis

This dissertation includes three different topics: general introduction of capillary electrophoresis (CE); gradient in CE and CE in biological separations; and capillary gel electrophoresis (CGE) for DNA separation. Factors such as temperature, viscosity, pH, and the surface of capillary walls affecting the separation performance are demonstrated. A pH gradient between 3.0 and 5.2 is useful to improve the resolution among eight different organic acids. A flow gradient due to the change in the concentration of surfactant, which is able to coat to the capillary wall to change the flow rate and its direction, is also shown as a good way to improve the resolution for organic compounds. A temperature gradient caused by joule heat is shown by voltage programming to enhance the resolution and shorten the separation time for several phenolic compounds. The author also shows that self-regulating dynamic control of electroosmotic flow in CE by simply running separation in different concentrations of surfactant has less matrix effect on the separation performance. One of the most important demonstrations in this dissertation is that the author proposes on-column reaction which gives several advantages including the use of a small amount of sample, low risk of contamination, and time saving and kinetic …
Date: July 27, 1994
Creator: Chang, H. T.
System: The UNT Digital Library
Theoretical study of the noble metals on semiconductor surfaces and Ti-base shape memory alloys (open access)

Theoretical study of the noble metals on semiconductor surfaces and Ti-base shape memory alloys

The electronic and structural properties of the ({radical}3 {times} {radical}3) R30{degrees} Ag/Si(111) and ({radical}3 {times} {radical}3) R30{degrees} Au/Si(111) surfaces are investigated using first principles total energy calculations. We have tested almost all experimentally proposed structural models for both surfaces and found the energetically most favorable model for each of them. The lowest energy model structure of the ({radical}3 {times} {radical}3) R30{degrees} Ag/Si(111) surface consists of a top layer of Ag atoms arranged as ``honeycomb-chained-trimers`` lying above a distorted ``missing top layer`` Si(111) substrate. The coverage of Ag is 1 monolayer (ML). We find that the honeycomb structure observed in STM images arise from the electronic charge densities of an empty surface band near the Fermi level. The electronic density of states of this model gives a ``pseudo-gap`` around the Fermi level, which is consistent with experimental results. The lowest energy model for the ({radical}3 {times} {radical}3) R30{degrees} Au/Si(111) surface is a conjugate honeycomb-chained-trimer (CHCT-1) configuration which consists of a top layer of trimers formed by 1 ML Au atoms lying above a ``missing top layer`` Si(111) substrate with a honeycomb-chained-trimer structure for its first layer. The structures of Au and Ag are in fact quite similar and belong to the …
Date: July 27, 1994
Creator: Ding, Yungui
System: The UNT Digital Library
Selenophene transition metal complexes (open access)

Selenophene transition metal complexes

This research shows that selenophene transition metal complexes have a chemistry that is similar to their thiophene analogs. Selenophene coordination has been demonstrated and confirmed by molecular structure in both the {eta}{sup 5}- and the {eta}{sup 1}(Se)-coordination modes. The reaction chemistry of selenophene complexes closely resembles that of the analogous thiophene complexes. One major difference, however, is that selenophene is a better donor ligand than thiophene making the selenophene complexes more stable than the corresponding thiophene complexes. The {sup 77}Se NMR chemical shift values for selenophene complexes fall within distinct regions primarily depending on the coordination mode of the selenophene ligand. In the final paper, the C-H bond activation of {eta}{sup 1}(S)-bound thiophenes, {eta}{sup 1}(S)-benzothiophene and {eta}{sup 1}(Se)-bound selenophenes has been demonstrated. The deprotonation and rearrangement of the {eta}{sup 1}(E)-bound ligand to the carbon bound L-yl complex readily occurs in the presence of base. Reprotonation with a strong acid gives a carbene complex that is unreactive towards nucleophilic attack at the carbene carbon and is stable towards exposure to air. The molecular structure of [Cp(NO)(PPh{sub 3})Re(2-benzothioenylcarbene)]O{sub 3}SCF{sub 3} was determined and contains a Re-C bond with substantial double bond character. Methyl substitution for the thienylcarbene or selenylcarbene gives a carbene …
Date: July 27, 1994
Creator: White, C. J.
System: The UNT Digital Library
Dynamic NMR studies of restricted arene rotation in the chromiu tricarbonyl thiophene and selenophene complexes (open access)

Dynamic NMR studies of restricted arene rotation in the chromiu tricarbonyl thiophene and selenophene complexes

This thesis contains the results of organometallic studies of thiophene and selenophene coordination in transition metal complexes. Chromium tricarbonyl complexes of thiophene, selenophene, and their alkyl-substituted derivatives were prepared and variable-temperature {sup 13}C NMR spectra of these complexes were recorded in dimethyl ether. Bandshape analyses of these spectra yielded activation parameters for restricted rotation of the thiophene and selenophene ligands in these complexes. Extended Hueckel molecular orbital calculations (EHMO) of the free thiophene and selenophene ligands and selected chromium tricarbonyl thiophene complexes were performed to better explain the activation barriers of these complexes. The structure of Cr(CO){sub 3}({eta}{sup 5}-2,5-dimethylthiophene) was established by a single crystal X-ray diffraction study.
Date: May 27, 1994
Creator: Sanger, M. J.
System: The UNT Digital Library
Quantum dynamical phenomena of independent electrons in semiconductor superlattices subject to a uniform electric field (open access)

Quantum dynamical phenomena of independent electrons in semiconductor superlattices subject to a uniform electric field

This report discusses the following topics: Bloch oscillations and other dynamical phenomena of electrons in semiconductor superlattices; solvable dynamical model of an electron in a one-dimensional aperiodic lattice subject to a uniform electric field; and quantum dynamical phenomena of electrons in aperiodic semiconductor superlattices.
Date: July 27, 1994
Creator: Bouchard, A. M.
System: The UNT Digital Library
Photodissociation and photoionization of organosulfur radicals (open access)

Photodissociation and photoionization of organosulfur radicals

The dynamics of S({sup 3}P{sub 2,1,0}, {sup 1}D{sub 2}) production from the 193 nm photodissociation of CH{sub 3}SCH{sub 3}, H{sub 2}S and CH{sub 3}SH have been studied using 2 + 1 resonance-enhanced multiphoton ionization (REMPI) techniques. The 193 nm photodissociation cross sections for the formation of S from CH{sub 3}S and HS initially prepared in the photodissociation of CH{sub 3}SCH{sub 3} and H{sub 2}S are estimated to be 1 {times} 10{sup {minus}18} and 1.1 {times} 10{sup {minus}18} cm{sup 2}, respectively. The dominant product from CH{sub 3}S is S({sup 1}D), while that from SH is S({sup 3}P). Possible potential energy surfaces involved in the 193 nm photodissociation of CH{sub 3}S({tilde X}) and SH(X) have been also examined. Threshold photoelectron (PE) spectra for SH and CH{sub 3}S formed in the ultraviolet photodissociation of H{sub 2}S and CH{sub 3}SH, respectively, have been measured using the nonresonant two-photon pulsed field ionization (N2P-PFI) technique. The rotationally resolved N2P-PFI-PE spectrum obtained for SH indicates that photoionization dynamics favors the rotational angular momentum change {Delta}N < 0 with the {Delta}N value up to {minus}3, an observation similar to that found in the PFI-PE spectra of OH (OD) and NO. The ionization energies for SH(X{sup 2}{product}{sub 3,2}) and …
Date: May 27, 1994
Creator: Hsu, Chia-Wei
System: The UNT Digital Library
Studies of selenium and xenon in inductively coupled plasma mass spectrometry (open access)

Studies of selenium and xenon in inductively coupled plasma mass spectrometry

Since its development, inductively coupled plasma mass spectrometry (ICP-MS) has been a widely used analytical technique. ICP-MS offers low detection limits, easy determination of isotope ratios, and simple mass spectra from analyte elements. ICP-MS has been successfully employed for many applications including geological, environmental, biological, metallurgical, food, medical, and industrial. One specific application important to many areas of study involves elemental speciation by using ICP-MS as an element specific detector interfaced to liquid chromatography. Elemental speciation information is important and cannot be obtained by atomic spectrometric methods alone which measure only the total concentration of the element present. Part 1 of this study describes the speciation of selenium in human serum by size exclusion chromatography (SEC) and detection by ICP-MS. Although ICP-MS has been widely sued, room for improvement still exists. Difficulties in ICP-MS include noise in the background, matrix effects, clogging of the sampling orifice with deposited solids, and spectral interference caused by polyatomic ions. Previous work has shown that the addition of xenon into the central channel of the ICP decreases polyatomic ion levels. In Part 2 of this work, a fundamental study involving the measurement of the excitation temperature is carried out to further understand xenon`s role …
Date: July 27, 1994
Creator: Bricker, T.
System: The UNT Digital Library
Distribution-independent hierarchicald N-body methods (open access)

Distribution-independent hierarchicald N-body methods

The N-body problem is to simulate the motion of N particles under the influence of mutual force fields based on an inverse square law. The problem has applications in several domains including astrophysics, molecular dynamics, fluid dynamics, radiosity methods in computer graphics and numerical complex analysis. Research efforts have focused on reducing the O(N{sup 2}) time per iteration required by the naive algorithm of computing each pairwise interaction. Widely respected among these are the Barnes-Hut and Greengard methods. Greengard claims his algorithm reduces the complexity to O(N) time per iteration. Throughout this thesis, we concentrate on rigorous, distribution-independent, worst-case analysis of the N-body methods. We show that Greengard`s algorithm is not O(N), as claimed. Both Barnes-Hut and Greengard`s methods depend on the same data structure, which we show is distribution-dependent. For the distribution that results in the smallest running time, we show that Greengard`s algorithm is {Omega}(N log{sup 2} N) in two dimensions and {Omega}(N log{sup 4} N) in three dimensions. We have designed a hierarchical data structure whose size depends entirely upon the number of particles and is independent of the distribution of the particles. We show that both Greengard`s and Barnes-Hut algorithms can be used in conjunction with …
Date: July 27, 1994
Creator: Aluru, S.
System: The UNT Digital Library
Interactions and Lifetimes of K Mesons (open access)

Interactions and Lifetimes of K Mesons

The following report analyzes interactions of K+ and K- mesons and measures their lifetimes using a nuclear emulsion technique.
Date: November 27, 1956
Creator: Iloff, Edwin Laurence
System: The UNT Digital Library
The Angular Distribution of Fission Fragments From the Fast Neutron-Induced Fission of U-234 (open access)

The Angular Distribution of Fission Fragments From the Fast Neutron-Induced Fission of U-234

Submitted to Univ. of Tennessee, Knoxville. The fast neutron-induced fission cross section of U/sup 234/ was measured from threshold to 4-Mev neutron energy. A maximum of 1.26 barns was found at 850 kev followed by a minimum of 1.10 barns at 8050 kev. The angular ani-sotropy of the fragment distribution was measured for neutron energies from 400 kev to 4 Mev. Extrema in the ratio sigma /sub f//( sigma /sub f(90 deg ) were found at 500, 850, and 1050 kev; the distribution at 500 kev showing a maximum in the direction normal to the beam (side-wise peaking) while that at 850 kev showed a maximum along the beam direction. The distribution at 8050 kev showed forward peaking but to a lesser extent than for energies immediately higher or lower. The behavior was analyzed according to the theories of Bohr and Wheeler. The dip in cross section between 850 and 1050 kev is consistent with the suggestion of Wheeler that neutron competition in the decay of the compound nucleus enters with increased strength in this area. Vibration-rotational levels in U/sup 234/ beginning at 790 kev are known to exist and inelastic neutron scattering to these levels serves to depress the …
Date: August 27, 1962
Creator: Lamphere, R. W.
System: The UNT Digital Library
Nuclear Reactions Induced by Pions and Protons (open access)

Nuclear Reactions Induced by Pions and Protons

Effects due to elementary particle-like collisions within nuclear matter have been observed in several nuclear reactions caused by pions and protons. Simple nuclear reactions of the form ZA(a,an)Z/sup A-1/ and Z/sup A/(a,ap)(Z-1)/ sup A-1/ have excitation functions that are sensitive to changes in the elementary-particle cross sections. The excitation function for the reaction C/ sup 12/( pi /sup -/, pi /sup -/n)C/sup 11/ is measure d from 53 to 1610 Mev by bombarding targets of plastic scintillator with pions. The intensity of the pion beam is monitored with a two-counter telescope and 40 Mc scaling system. The scintillator target is mounted on a phototube and becomes the detector for the carbon-11 positron activity. Corrections are made for muon contamination in the beam, coincidence losses in the monitor system, carbon-11 activity produced by stray background at the accelerator, carbon-1l activity produced by secondaries in the target, and the efficiency of the carbon-11 detection system. The C/sup 12/( pi /sup -/, pi /sup -/n)C/sup 11/ cross sections rise to a peak of abo ut 70 mb at 190 Mev, that corresponds to the resonance in freeparticle pi /sup -/n scattering at 190 Mev. Calculations based on a knock-on'' collision mechanism and sharp-cutoff …
Date: November 27, 1962
Creator: Reeder, P. L.
System: The UNT Digital Library
The High Temperature Vaporization and Thermodynamic Properties of Titanium Monosulfide (open access)

The High Temperature Vaporization and Thermodynamic Properties of Titanium Monosulfide

None
Date: July 27, 1964
Creator: Franzen, H F & Gilles, P W
System: The UNT Digital Library
Some observations related to modeling explosive cratering phenomena (open access)

Some observations related to modeling explosive cratering phenomena

None
Date: March 27, 1973
Creator: White, J.W.
System: The UNT Digital Library
Scalable Performance Measurement and Analysis (open access)

Scalable Performance Measurement and Analysis

Concurrency levels in large-scale, distributed-memory supercomputers are rising exponentially. Modern machines may contain 100,000 or more microprocessor cores, and the largest of these, IBM's Blue Gene/L, contains over 200,000 cores. Future systems are expected to support millions of concurrent tasks. In this dissertation, we focus on efficient techniques for measuring and analyzing the performance of applications running on very large parallel machines. Tuning the performance of large-scale applications can be a subtle and time-consuming task because application developers must measure and interpret data from many independent processes. While the volume of the raw data scales linearly with the number of tasks in the running system, the number of tasks is growing exponentially, and data for even small systems quickly becomes unmanageable. Transporting performance data from so many processes over a network can perturb application performance and make measurements inaccurate, and storing such data would require a prohibitive amount of space. Moreover, even if it were stored, analyzing the data would be extremely time-consuming. In this dissertation, we present novel methods for reducing performance data volume. The first draws on multi-scale wavelet techniques from signal processing to compress systemwide, time-varying load-balance data. The second uses statistical sampling to select a small …
Date: October 27, 2009
Creator: Gamblin, T
System: The UNT Digital Library
SAMPLING AND MASS SPECTROMETRY APPROACHES FOR THE DETECTION OF DRUGS AND FOREIGN CONTAMINANTS IN BREATH FOR HOMELAND SECURITY APPLICATIONS (open access)

SAMPLING AND MASS SPECTROMETRY APPROACHES FOR THE DETECTION OF DRUGS AND FOREIGN CONTAMINANTS IN BREATH FOR HOMELAND SECURITY APPLICATIONS

Homeland security relies heavily on analytical chemistry to identify suspicious materials and persons. Traditionally this role has focused on attribution, determining the type and origin of an explosive, for example. But as technology advances, analytical chemistry can and will play an important role in the prevention and preemption of terrorist attacks. More sensitive and selective detection techniques can allow suspicious materials and persons to be identified even before a final destructive product is made. The work presented herein focuses on the use of commercial and novel detection techniques for application to the prevention of terrorist activities. Although drugs are not commonly thought of when discussing terrorism, narcoterrorism has become a significant threat in the 21st century. The role of the drug trade in the funding of terrorist groups is prevalent; thus, reducing the trafficking of illegal drugs can play a role in the prevention of terrorism by cutting off much needed funding. To do so, sensitive, specific, and robust analytical equipment is needed to quickly identify a suspected drug sample no matter what matrix it is in. Single Particle Aerosol Mass Spectrometry (SPAMS) is a novel technique that has previously been applied to biological and chemical detection. The current work …
Date: January 27, 2009
Creator: Martin, A N
System: The UNT Digital Library
Strange-Particle Production by 1170-MeV/c pi- Mesons (open access)

Strange-Particle Production by 1170-MeV/c pi- Mesons

Production of {Lambda} + K{sup 0}, {Sigma}{sup 0} + K{sup 0}, and {Sigma}{sup -} + K{sup +} by 1170-MeV/c {pi}{sup -} mesons has been studied in the Lawrence Radiation Laboratory 72-inch hydrogen bubble chamber, Cross sections, angular distributions, and polarizations are presented. The polarization of the {Sigma}{sup 0} is determined at four center-of-mass angles and found to be small everywhere. Based on published results for the reaction {pi}{sup +} + p {yields} {Sigma}{sup +}, K{sup +}, a comparison of the polarizations of {Sigma}{sup +}, {Sigma}{sup -}, and {Sigma}{sup 0} is made from the charge-independence triangle. A conclusion is reached that the {Sigma}{sup -} polarization should be large, and that the {Sigma}{sup -} and {Sigma}{sup +} polarizations should be opposite in sign.
Date: May 27, 1963
Creator: Anderson, Jared Arnold
System: The UNT Digital Library
Soft X-ray emission spectroscopy of liquids and lithium batterymaterials (open access)

Soft X-ray emission spectroscopy of liquids and lithium batterymaterials

Lithium ion insertion into electrode materials is commonly used in rechargeable battery technology. The insertion implies changes in both the crystal structure and the electronic structure of the electrode material. Side-reactions may occur on the surface of the electrode which is exposed to the electrolyte and form a solid electrolyte interface (SEI). The understanding of these processes is of great importance for improving battery performance. The chemical and physical properties of water and alcohols are complicated by the presence of strong hydrogen bonding. Various experimental techniques have been used to study geometrical structures and different models have been proposed to view the details of how these liquids are geometrically organized by hydrogen bonding. However, very little is known about the electronic structure of these liquids, mainly due to the lack of suitable experimental tools. In this thesis examples of studies of lithium battery electrodes and liquid systems using soft x-ray emission spectroscopy will be presented. Monochromatized synchrotron radiation has been used to accomplish selective excitation, in terms of energy and polarization. The electronic structure of graphite electrodes has been studied, before and after lithium intercalation. Changes in the electronic structure upon lithiation due to transfer of electrons into the graphite …
Date: October 27, 2004
Creator: Augustsson, Andreas
System: The UNT Digital Library
The Structure of Heavy Nuclei: A Study of Very Weak Alpha Branching (open access)

The Structure of Heavy Nuclei: A Study of Very Weak Alpha Branching

Very weak alpha branching in heavy elements was studied by a recently developed coincidence technique. This technique makes it possible to measure the energies and intensities of both alpha -particle groups and de-exciting radiation, even when the transition intensities are as low as 10/sup -8/ relative to the most intense alpha group. Twenty alpha -particle emitters from Po/sup 214/ to Fm were examined. 00+ states (beta vibrations) were observed in six even-even nuclei, and analogous states were found in three odd-mass nuclei. They are in general characterized by low alpha-decay hindrance factors and roughly equal de-excitation by electric monopole and quadrupole transitions. However, the deexcitation of these states is in disagreement with vibrational model predictions in certain cases; more important, the de-excitation and other properties of the states exhibit some irregular variations from nucleus to nucleus which are evidence for some particle character in the states. Information was also obtained about some other types of levels. A number of 1- states (octupole vibrations) were observed, and a possible 2- state was observed in U/sup 236/. A state that appears to be analogous to the 1-octupole states of even-even nuclei was observed in U/sup 235/. In Pu/sup 239/, a K = …
Date: September 27, 1963
Creator: Lederer, C. M.
System: The UNT Digital Library
Modifying the organic/electrode interface in Organic Solar Cells (OSCs) and improving the efficiency of solution-processed phosphorescent Organic Light-Emitting Diodes (OLEDs) (open access)

Modifying the organic/electrode interface in Organic Solar Cells (OSCs) and improving the efficiency of solution-processed phosphorescent Organic Light-Emitting Diodes (OLEDs)

Organic semiconductors devices, such as, organic solar cells (OSCs), organic light-emitting diodes (OLEDs) and organic field-effect transistors (OFETs) have drawn increasing interest in recent decades. As organic materials are flexible, light weight, and potentially low-cost, organic semiconductor devices are considered to be an alternative to their inorganic counterparts. This dissertation will focus mainly on OSCs and OLEDs. As a clean and renewable energy source, the development of OSCs is very promising. Cells with 9.2% power conversion efficiency (PCE) were reported this year, compared to &lt; 8% two years ago. OSCs belong to the so-called third generation solar cells and are still under development. While OLEDs are a more mature and better studied field, with commercial products already launched in the market, there are still several key issues: (1) the cost of OSCs/OLEDs is still high, largely due to the costly manufacturing processes; (2) the efficiency of OSCs/OLEDs needs to be improved; (3) the lifetime of OSCs/OLEDs is not sufficient compared to their inorganic counterparts; (4) the physics models of the behavior of the devices are not satisfactory. All these limitations invoke the demand for new organic materials, improved device architectures, low-cost fabrication methods, and better understanding of device physics. For …
Date: April 27, 2012
Creator: Xiao, Teng
System: The UNT Digital Library
Developments in enzyme immobilization and near-infrared Raman spectroscopy with downstream renewable energy applications (open access)

Developments in enzyme immobilization and near-infrared Raman spectroscopy with downstream renewable energy applications

This dissertation focuses on techniques for (1) increasing ethanol yields from saccharification and fermentation of cellulose using immobilized cellulase, and (2) the characterization and classification of lignocellulosic feedstocks, and quantification of useful parameters such as the syringyl/guaiacyl (S/G) lignin monomer content using 1064 nm dispersive multichannel Raman spectroscopy and chemometrics.
Date: August 27, 2012
Creator: Lupoi, Jason
System: The UNT Digital Library