Degree Level

56 Matching Results

Results open in a new window/tab.

The Angular Distribution of Fission Fragments From the Fast Neutron-Induced Fission of U-234 (open access)

The Angular Distribution of Fission Fragments From the Fast Neutron-Induced Fission of U-234

Submitted to Univ. of Tennessee, Knoxville. The fast neutron-induced fission cross section of U/sup 234/ was measured from threshold to 4-Mev neutron energy. A maximum of 1.26 barns was found at 850 kev followed by a minimum of 1.10 barns at 8050 kev. The angular ani-sotropy of the fragment distribution was measured for neutron energies from 400 kev to 4 Mev. Extrema in the ratio sigma /sub f//( sigma /sub f(90 deg ) were found at 500, 850, and 1050 kev; the distribution at 500 kev showing a maximum in the direction normal to the beam (side-wise peaking) while that at 850 kev showed a maximum along the beam direction. The distribution at 8050 kev showed forward peaking but to a lesser extent than for energies immediately higher or lower. The behavior was analyzed according to the theories of Bohr and Wheeler. The dip in cross section between 850 and 1050 kev is consistent with the suggestion of Wheeler that neutron competition in the decay of the compound nucleus enters with increased strength in this area. Vibration-rotational levels in U/sup 234/ beginning at 790 kev are known to exist and inelastic neutron scattering to these levels serves to depress the …
Date: August 27, 1962
Creator: Lamphere, R. W.
System: The UNT Digital Library
Interactions and Lifetimes of K Mesons (open access)

Interactions and Lifetimes of K Mesons

The following report analyzes interactions of K+ and K- mesons and measures their lifetimes using a nuclear emulsion technique.
Date: November 27, 1956
Creator: Iloff, Edwin Laurence
System: The UNT Digital Library
Modifying the organic/electrode interface in Organic Solar Cells (OSCs) and improving the efficiency of solution-processed phosphorescent Organic Light-Emitting Diodes (OLEDs) (open access)

Modifying the organic/electrode interface in Organic Solar Cells (OSCs) and improving the efficiency of solution-processed phosphorescent Organic Light-Emitting Diodes (OLEDs)

Organic semiconductors devices, such as, organic solar cells (OSCs), organic light-emitting diodes (OLEDs) and organic field-effect transistors (OFETs) have drawn increasing interest in recent decades. As organic materials are flexible, light weight, and potentially low-cost, organic semiconductor devices are considered to be an alternative to their inorganic counterparts. This dissertation will focus mainly on OSCs and OLEDs. As a clean and renewable energy source, the development of OSCs is very promising. Cells with 9.2% power conversion efficiency (PCE) were reported this year, compared to < 8% two years ago. OSCs belong to the so-called third generation solar cells and are still under development. While OLEDs are a more mature and better studied field, with commercial products already launched in the market, there are still several key issues: (1) the cost of OSCs/OLEDs is still high, largely due to the costly manufacturing processes; (2) the efficiency of OSCs/OLEDs needs to be improved; (3) the lifetime of OSCs/OLEDs is not sufficient compared to their inorganic counterparts; (4) the physics models of the behavior of the devices are not satisfactory. All these limitations invoke the demand for new organic materials, improved device architectures, low-cost fabrication methods, and better understanding of device physics. For …
Date: April 27, 2012
Creator: Xiao, Teng
System: The UNT Digital Library
Developments in enzyme immobilization and near-infrared Raman spectroscopy with downstream renewable energy applications (open access)

Developments in enzyme immobilization and near-infrared Raman spectroscopy with downstream renewable energy applications

This dissertation focuses on techniques for (1) increasing ethanol yields from saccharification and fermentation of cellulose using immobilized cellulase, and (2) the characterization and classification of lignocellulosic feedstocks, and quantification of useful parameters such as the syringyl/guaiacyl (S/G) lignin monomer content using 1064 nm dispersive multichannel Raman spectroscopy and chemometrics.
Date: August 27, 2012
Creator: Lupoi, Jason
System: The UNT Digital Library
SAMPLING AND MASS SPECTROMETRY APPROACHES FOR THE DETECTION OF DRUGS AND FOREIGN CONTAMINANTS IN BREATH FOR HOMELAND SECURITY APPLICATIONS (open access)

SAMPLING AND MASS SPECTROMETRY APPROACHES FOR THE DETECTION OF DRUGS AND FOREIGN CONTAMINANTS IN BREATH FOR HOMELAND SECURITY APPLICATIONS

Homeland security relies heavily on analytical chemistry to identify suspicious materials and persons. Traditionally this role has focused on attribution, determining the type and origin of an explosive, for example. But as technology advances, analytical chemistry can and will play an important role in the prevention and preemption of terrorist attacks. More sensitive and selective detection techniques can allow suspicious materials and persons to be identified even before a final destructive product is made. The work presented herein focuses on the use of commercial and novel detection techniques for application to the prevention of terrorist activities. Although drugs are not commonly thought of when discussing terrorism, narcoterrorism has become a significant threat in the 21st century. The role of the drug trade in the funding of terrorist groups is prevalent; thus, reducing the trafficking of illegal drugs can play a role in the prevention of terrorism by cutting off much needed funding. To do so, sensitive, specific, and robust analytical equipment is needed to quickly identify a suspected drug sample no matter what matrix it is in. Single Particle Aerosol Mass Spectrometry (SPAMS) is a novel technique that has previously been applied to biological and chemical detection. The current work …
Date: January 27, 2009
Creator: Martin, A N
System: The UNT Digital Library
Fundamental and methodological investigations for the improvement of elemental analysis by inductively coupled plasma mass soectrometry (open access)

Fundamental and methodological investigations for the improvement of elemental analysis by inductively coupled plasma mass soectrometry

This dissertation describes a variety of studies meant to improve the analytical performance of inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation (LA) ICP-MS. The emission behavior of individual droplets and LA generated particles in an ICP is studied using a high-speed, high frame rate digital camera. Phenomena are observed during the ablation of silicate glass that would cause elemental fractionation during analysis by ICP-MS. Preliminary work for ICP torch developments specifically tailored for the improvement of LA sample introduction are presented. An abnormal scarcity of metal-argon polyatomic ions (MAr{sup +}) is observed during ICP-MS analysis. Evidence shows that MAr{sup +} ions are dissociated by collisions with background gas in a shockwave near the tip of the skimmer cone. Method development towards the improvement of LA-ICP-MS for environmental monitoring is described. A method is developed to trap small particles in a collodion matrix and analyze each particle individually by LA-ICP-MS.
Date: July 27, 2012
Creator: Ebert, Christopher Hysjulien
System: The UNT Digital Library
Scalable Performance Measurement and Analysis (open access)

Scalable Performance Measurement and Analysis

Concurrency levels in large-scale, distributed-memory supercomputers are rising exponentially. Modern machines may contain 100,000 or more microprocessor cores, and the largest of these, IBM's Blue Gene/L, contains over 200,000 cores. Future systems are expected to support millions of concurrent tasks. In this dissertation, we focus on efficient techniques for measuring and analyzing the performance of applications running on very large parallel machines. Tuning the performance of large-scale applications can be a subtle and time-consuming task because application developers must measure and interpret data from many independent processes. While the volume of the raw data scales linearly with the number of tasks in the running system, the number of tasks is growing exponentially, and data for even small systems quickly becomes unmanageable. Transporting performance data from so many processes over a network can perturb application performance and make measurements inaccurate, and storing such data would require a prohibitive amount of space. Moreover, even if it were stored, analyzing the data would be extremely time-consuming. In this dissertation, we present novel methods for reducing performance data volume. The first draws on multi-scale wavelet techniques from signal processing to compress systemwide, time-varying load-balance data. The second uses statistical sampling to select a small …
Date: October 27, 2009
Creator: Gamblin, T
System: The UNT Digital Library
Numerical Simulation of the Performance Characteristics, Instability, and Effects of Band Gap Grading in Cadmium Telluride Based Photovoltaic Devices (open access)

Numerical Simulation of the Performance Characteristics, Instability, and Effects of Band Gap Grading in Cadmium Telluride Based Photovoltaic Devices

Using computer simulations, the performance of several CdTe based photovoltaic structures has been studied. The advantages and disadvantages of band gap grading, through the use of (Zn, Cd)Te, have also been investigated in these structures. Grading at the front interface between a CdS window layer and a CdTe absorber layer, can arise due to interdiffusion between the materials during growth or due to the intentional variation of the material composition. This grading has been shown to improve certain performance metrics, such as the open-circuit voltage, while degrading others, such as the fill factor, depending on the amount and distance of the grading. The presence of a Schottky barrier as the back contact has also been shown to degrade the photovoltaic performance of the device, resulting in a characteristic IV curve. However, with the appropriate band gap grading at the back interface, it has been shown that the performance can be enhanced through more efficient carrier collection. These results were then correlated with experimental observations of the performance degradation in devices subjected to light and heat stress.
Date: June 27, 2001
Creator: Petersen, Michael David
System: The UNT Digital Library
The Effect of Oxygen Contamination on the Amorphous Structure of Thermally Sprayed Coatings of Cu47Ti33Zr11Ni8Si1 (open access)

The Effect of Oxygen Contamination on the Amorphous Structure of Thermally Sprayed Coatings of Cu47Ti33Zr11Ni8Si1

this research has shown that it is possible to deposit coatings of gas atomized Cu{sub 47}Ti{sub 33}Zr{sub 11}Ni{sub 8}Si{sub 1} powders containing various levels of oxygen contamination using plasma arc spray methods. The structure of the coating was found to depend primarily on the spray environment, with an argon atmosphere producing the most amorphous samples for a given starting powder. The oxygen content of the coatings reflected the relative levels of the oxygen contamination in the starting powders. The analysis of the starting powders displayed oxygen contents ranging from 0.125-0.79 wt.%. It was shown that higher oxygen levels lead to more crystalline structure in the starting powders as determined by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). This trend was found to be true for both the starting powders and for the plasma sprayed coatings. Chemical composition for all starting powders was very close to the nominal alloy composition. Chemical changes in the coatings involved the loss of Cu in coatings where high levels of oxidation were found. Cavitation erosion testing of selected coatings showed a weak trend that coatings prepared by vacuum plasma spray (VPS) had lower damage rates, but there was no clear data to indicate which …
Date: May 27, 2002
Creator: Besser, Matthew Frank
System: The UNT Digital Library
Enhancing the Properties of Carbon and Gold Substrates by Surface Modification (open access)

Enhancing the Properties of Carbon and Gold Substrates by Surface Modification

The properties of both carbon and gold substrates are easily affected by the judicious choice of a surface modification protocol. Several such processes for altering surface composition have been published in literature. The research presented in this thesis primarily focuses on the development of on-column methods to modify carbon stationary phases used in electrochemically modulated liquid chromatography (EMLC). To this end, both porous graphitic carbon (PGC) and glassy carbon (GC) particles have been modified on-column by the electroreduction of arenediazonium salts and the oxidation of arylacetate anions (the Kolbe reaction). Once modified, the carbon stationary phases show enhanced chromatographic performance both in conventional liquid chromatographic columns and EMLC columns. Additionally, one may also exploit the creation of aryl films to by electroreduction of arenediazonium salts in the creation of nanostructured materials. The formation of mercaptobenzene film on the surface of a GC electrode provides a linking platform for the chemisorption of gold nanoparticles. After deposition of nanoparticles, the surface chemistry of the gold can be further altered by self-assembled monolayer (SAM) formation via the chemisorption of a second thiol species. Finally, the properties of gold films can be altered such that they display carbon-like behavior through the formation of benzenehexathiol …
Date: June 27, 2002
Creator: Harnisch, Jennifer Anne
System: The UNT Digital Library
Modeling of Photonic Band Gap Crystals and Applications (open access)

Modeling of Photonic Band Gap Crystals and Applications

In this work, the authors have undertaken a theoretical approach to the complex problem of modeling the flow of electromagnetic waves in photonic crystals. The focus is to address the feasibility of using the exciting phenomena of photonic gaps (PBG) in actual applications. The authors start by providing analytical derivations of the computational electromagnetic methods used in their work. They also present a detailed explanation of the physics underlying each approach, as well as a comparative study of the strengths and weaknesses of each method. The Plane Wave expansion, Transfer Matrix, and Finite Difference time Domain Methods are addressed. They also introduce a new theoretical approach, the Modal Expansion Method. They then shift the attention to actual applications. They begin with a discussion of 2D photonic crystal wave guides. The structure addressed consists of a 2D hexagonal structure of air cylinders in a layered dielectric background. Comparison with the performance of a conventional guide is made, as well as suggestions for enhancing it. The studies provide an upper theoretical limit on the performance of such guides, as they assumed no crystal imperfections and non-absorbing media. Next, they study 3D metallic PBG materials at near infrared and optical wavelengths. The main …
Date: August 27, 2002
Creator: El-Kady, Ihab Fathy
System: The UNT Digital Library
Organusulfur Catalysis With Reduced Molybdenum Sulfides Containing the Mo6S8 Cluster (open access)

Organusulfur Catalysis With Reduced Molybdenum Sulfides Containing the Mo6S8 Cluster

Industrial synthesis of sulfur-containing organic chemicals basically focuses on the broad categories of mercaptans (thiols), alkylsulfides (thioethers), polysulfides, and thiophenes. Of the organo-sulfur compounds produced, by far the most important in terms of quantities produced is methyl mercaptan (methanethiol or MeSH), which is produced mainly for the downstream production of methionine and methanesulfonyl chloride. Higher thiols are also used in the manufacture of rubber and plastics as polymerization regulators, chain transfer agents, or initiators. Other important organosulfur chemicals are dimethyl sulfide (DMS) and dimethyl disulfide (DMDS), both of which are used extensively for presulfiding of industrial hydroprocessing catalysts, and substituted thiophenes which are used as intermediates for production of agrochemicals, dyes, and pharmaceuticals. Thiols are produced commercially at the rate of about 10{sup 4} ton/yr from hydrogen sulfide (H{sub 2}S) and alcohols or olefins, using homogeneous free-radical synthesis, or heterogeneous catalysts based on solid acids or supported metal oxides and/or sulfides. Despite this large production rate, and the industrial importance of the organosulfur compounds, only limited research has been devoted to the development of new catalytic materials for their synthesis. Additionally, for most organosulfur catalytic reactions, only limited information exists about reaction mechanisms, active sites, adsorbed surface species, and especially …
Date: August 27, 2002
Creator: Paskach, Thomas Jay
System: The UNT Digital Library
Analysis of Gd5(Si2Ge2) Microstructure and Phase Transition (open access)

Analysis of Gd5(Si2Ge2) Microstructure and Phase Transition

With the recent discovery of the giant magnetocaloric effect and the beginning of extensive research on the properties of Gd{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4}, a necessity has developed for a better understanding of the microstructure and crystal structure of this family of rare earth compounds with startling phenomenological properties. The aim of this research is to characterize the microstructure of the Gd{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4}, with X {approx_equal} 2 and its phase change by using both transmission and electron microscopes. A brief history of past work on Gd{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} is necessary to understand this research in its proper context.
Date: June 27, 2002
Creator: Meyers, John Scott
System: The UNT Digital Library
Length Scale Correlations of Cellular Microstructures in Directionally Solidified Binary System (open access)

Length Scale Correlations of Cellular Microstructures in Directionally Solidified Binary System

In a cellular array, a range of primary spacing is found to be stable under given growth conditions. Since a strong coupling of solute field exists between the neighboring cells, primary spacing variation should also influence other microstructure features such as cell shape and cell length. The existence of multiple solutions is examined in this study both theoretically as well as experimentally. A theoretical model is developed that identifies and relates four important microstructural lengths, which are found to be primary spacing, tip radius, cell width and cell length. This general microstructural relationship is shown to be valid for different cells in an array as well as for other cellular patterns obtained under different growth conditions. The unique feature of the model is that the microstructure correlation does not depend on composition or growth conditions since these variables scale microstructural lengths to satisfy the relationship obtained in this study. Detailed directional solidification experimental studies have been carried out in the succinonitrile-salol system to characterize and measure these four length scales. Besides the validation of the model, experimental results showed additional scaling laws to be present. In the regime where only a cellular structure is formed, the shape of the cell, …
Date: June 27, 2002
Creator: Shen, Yunxue
System: The UNT Digital Library
Bioanalytical Applications of Fluorescence Line-Narrowing and Non-Line-Narrowing Spectroscopy Interfaced with Capillary Electrophoresis and High-Performance Liquid Chromatography (open access)

Bioanalytical Applications of Fluorescence Line-Narrowing and Non-Line-Narrowing Spectroscopy Interfaced with Capillary Electrophoresis and High-Performance Liquid Chromatography

Capillary electrophoresis (CE) and high-performance liquid chromatography (HPLC) are widely used analytical separation techniques with many applications in chemical, biochemical, and biomedical sciences. Conventional analyte identification in these techniques is based on retention/migration times of standards; requiring a high degree of reproducibility, availability of reliable standards, and absence of coelution. From this, several new information-rich detection methods (also known as hyphenated techniques) are being explored that would be capable of providing unambiguous on-line identification of separating analytes in CE and HPLC. As further discussed, a number of such on-line detection methods have shown considerable success, including Raman, nuclear magnetic resonance (NMR), mass spectrometry (MS), and fluorescence line-narrowing spectroscopy (FLNS). In this thesis, the feasibility and potential of combining the highly sensitive and selective laser-based detection method of FLNS with analytical separation techniques are discussed and presented. A summary of previously demonstrated FLNS detection interfaced with chromatography and electrophoresis is given, and recent results from on-line FLNS detection in CE (CE-FLNS), and the new combination of HPLC-FLNS, are shown.
Date: June 27, 2002
Creator: Roberts, Kenneth Paul
System: The UNT Digital Library
Nitric Oxide in Astrocyte-Neuron Signaling (open access)

Nitric Oxide in Astrocyte-Neuron Signaling

Astrocytes, a subtype of glial cell, have recently been shown to exhibit Ca{sup 2+} elevations in response to neurotransmitters. A Ca{sup 2+} elevation can propagate to adjacent astrocytes as a Ca{sup 2+} wave, which allows an astrocyte to communicate with its neighbors. Additionally, glutamate can be released from astrocytes via a Ca{sup 2+}-dependent mechanism, thus modulating neuronal activity and synaptic transmission. In this dissertation, the author investigated the roles of another endogenous signal, nitric oxide (NO), in astrocyte-neuron signaling. First the author tested if NO is generated during astrocytic Ca{sup 2+} signaling by imaging NO in purified murine cortical astrocyte cultures. Physiological concentrations of a natural messenger, ATP, caused a Ca{sup 2+}-dependent NO production. To test the roles of NO in astrocytic Ca{sup 2+} signaling, the author applied NO to astrocyte cultures via addition of a NO donor, S-nitrosol-N-acetylpenicillamine (SNAP). NO induced an influx of external Ca{sup 2+}, possibly through store-operated Ca{sup 2+} channels. The NO-induced Ca{sup 2+} signaling is cGMP-independent since 8-Br-cGMP, an agonistic analog of cGMP, did not induce a detectable Ca{sup 2+} change. The consequence of this NO-induced Ca{sup 2+} influx was assessed by simultaneously monitoring of cytosolic and internal store Ca{sup 2+} using fluorescent Ca{sup 2+} …
Date: June 27, 2002
Creator: Li, Nianzhen
System: The UNT Digital Library
Development of Novel Polymeric Materials for Gene Therapy and pH-Sensitive Drug Delivery: Modeling, Synthesis, Characterization, and Analysis (open access)

Development of Novel Polymeric Materials for Gene Therapy and pH-Sensitive Drug Delivery: Modeling, Synthesis, Characterization, and Analysis

The underlying theme of this thesis is the use of polymeric materials in bioapplications. Chapters 2-5 either develop a fundamental understanding of current materials used for bioapplications or establish protocols and procedures used in characterizing and synthesizing novel materials. In chapters 6 and 7 these principles and procedures are applied to the development of materials to be used for gene therapy and drug delivery. Chapter one is an introduction to the ideas that will be necessary to understand the subsequent chapters, as well as a literature review of these topics. Chapter two is a paper that has been published in the ''Journal of Controlled Release'' that examines the mechanism of drug release from a polymer gel, as well as experimental design suggestions for the evaluation of water soluble drug delivery systems. Chapter three is a paper that has been published in the ''Journal of Pharmaceutical Sciences'' that discusses the effect ionic salts have on properties of the polymer systems examined in chapter two. Chapter four is a paper published in the Materials Research Society Fall 2000 Symposium Series dealing with the design and synthesis of a pH-sensitive polymeric drug delivery device. Chapter five is a paper that has been published …
Date: August 27, 2002
Creator: Anderson, Brian Curtis
System: The UNT Digital Library
Magnetic X-Ray Scattering Study of GdCo2Ge2 and NdCo2Ge2 (open access)

Magnetic X-Ray Scattering Study of GdCo2Ge2 and NdCo2Ge2

The results of magnetic x-ray resonant exchange scattering (XRES) experiments are important to the development of an understanding of magnetic interactions in materials. The advantages of high Q resolution, polarization analysis, and the ability to study many different types of materials make it a vital tool in the field of condensed matter physics. Though the concept of XRES was put forth by Platzman and Tzoar in 1970, the technique did not gain much attention until the work of Gibbs and McWhan et al. in 1988. Since then, the technique of XRES has grown immensely in use and applicability. Researchers continue to improve upon the procedure and detection capabilities in order to study magnetic materials of all kinds. The XRES technique is particularly well suited to studying the rare earth metals because of the energy range involved. The resonant L edges of these elements fall between 5-10 KeV. Resonant and nonresonant x-ray scattering experiments were performed in order to develop an understanding of the magnetic ordering in GdCo{sub 2}Ge{sub 2} and NdCo{sub 2}Ge{sub 2}.
Date: August 27, 2002
Creator: Good, William
System: The UNT Digital Library
The Theory of Random Laser Systems (open access)

The Theory of Random Laser Systems

Studies of random laser systems are a new direction with promising potential applications and theoretical interest. The research is based on the theories of localization and laser physics. So far, the research shows that there are random lasing modes inside the systems which is quite different from the common laser systems. From the properties of the random lasing modes, they can understand the phenomena observed in the experiments, such as multi-peak and anisotropic spectrum, lasing mode number saturation, mode competition and dynamic processes, etc. To summarize, this dissertation has contributed the following in the study of random laser systems: (1) by comparing the Lamb theory with the Letokhov theory, the general formulas of the threshold length or gain of random laser systems were obtained; (2) they pointed out the vital weakness of previous time-independent methods in random laser research; (3) a new model which includes the FDTD method and the semi-classical laser theory. The solutions of this model provided an explanation of the experimental results of multi-peak and anisotropic emission spectra, predicted the saturation of lasing modes number and the length of localized lasing modes; (4) theoretical (Lamb theory) and numerical (FDTD and transfer-matrix calculation) studies of the origin of …
Date: June 27, 2002
Creator: Jiang, Xunya
System: The UNT Digital Library
The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique (open access)

The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

Over the last ten years, photonic band gap (PBG) theory and technology have become an important area of research because of the numerous possible applications ranging from high-efficiency laser diodes to optical circuitry. This research concentrates on reducing the length scale in the fabrication of layered photonic band gap structures and developing procedures to improve processing consistency. Various procedures and materials have been used in the fabrication of layered PBG structures. This research focused on an economical micro transfer molding approach to create the final PBG structure. A poly dimethylsiloxane (PDMS) rubber mold was created from a silicon substrate. It was filled with epoxy and built layer-by-layer to create a 3-D epoxy structure. This structure was infiltrated with nanoparticle titania or a titania sol-gel, then fired to remove the polymer mold, leaving a monolithic ceramic inverse of the epoxy structure. The final result was a lattice of titania rolds that resembles a face-centered tetragonal structure. The original intent of this research was to miniaturize this process to a bar size small enough to create a photonic band gap for wavelengths of visible electro-magnetic radiation. The factor limiting progress was the absence of a silicon master mold of small enough dimensions. …
Date: June 27, 2001
Creator: Sutherland, Kevin Jerome
System: The UNT Digital Library
Nuclear Reactions Induced by Pions and Protons (open access)

Nuclear Reactions Induced by Pions and Protons

Effects due to elementary particle-like collisions within nuclear matter have been observed in several nuclear reactions caused by pions and protons. Simple nuclear reactions of the form ZA(a,an)Z/sup A-1/ and Z/sup A/(a,ap)(Z-1)/ sup A-1/ have excitation functions that are sensitive to changes in the elementary-particle cross sections. The excitation function for the reaction C/ sup 12/( pi /sup -/, pi /sup -/n)C/sup 11/ is measure d from 53 to 1610 Mev by bombarding targets of plastic scintillator with pions. The intensity of the pion beam is monitored with a two-counter telescope and 40 Mc scaling system. The scintillator target is mounted on a phototube and becomes the detector for the carbon-11 positron activity. Corrections are made for muon contamination in the beam, coincidence losses in the monitor system, carbon-11 activity produced by stray background at the accelerator, carbon-1l activity produced by secondaries in the target, and the efficiency of the carbon-11 detection system. The C/sup 12/( pi /sup -/, pi /sup -/n)C/sup 11/ cross sections rise to a peak of abo ut 70 mb at 190 Mev, that corresponds to the resonance in freeparticle pi /sup -/n scattering at 190 Mev. Calculations based on a knock-on'' collision mechanism and sharp-cutoff …
Date: November 27, 1962
Creator: Reeder, P. L.
System: The UNT Digital Library
The High Temperature Vaporization and Thermodynamic Properties of Titanium Monosulfide (open access)

The High Temperature Vaporization and Thermodynamic Properties of Titanium Monosulfide

None
Date: July 27, 1964
Creator: Franzen, H F & Gilles, P W
System: The UNT Digital Library
Some observations related to modeling explosive cratering phenomena (open access)

Some observations related to modeling explosive cratering phenomena

None
Date: March 27, 1973
Creator: White, J.W.
System: The UNT Digital Library
The Effect of Initial Conditions on the Nonlinear Evolution of Perturbed Interfaces Driven by Strong Blast Waves (open access)

The Effect of Initial Conditions on the Nonlinear Evolution of Perturbed Interfaces Driven by Strong Blast Waves

In core-collapse supernovae, strong blast waves drive interfaces susceptible to Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH) instabilities. In addition, perturbation growth can result from material expansion in large-scale velocity gradients behind the shock front. Laser-driven experiments are designed to produce a strongly shocked interface whose evolution is a scaled version of the unstable hydrogen-helium interface in core-collapse supernovae such as SN 1987A. The ultimate goal of this research is to develop an understanding of the effect of hydrodynamic instabilities and the resulting transition to turbulence on supernovae observables that remain as yet unexplained. In this dissertation, we present a computational study of unstable systems driven by high Mach number shock and blast waves. Using multi-physics radiation hydrodynamics codes and theoretical models, we consider the late nonlinear instability evolution of single mode, few mode, and multimode interfaces. We rely primarily on 2D calculations but present recent 3D results as well. For planar multimode systems, we show that compressibility effects preclude the emergence of a regime of self-similar instability growth independent of the initial conditions (IC's) by allowing for memory of the initial conditions to be retained in the mix-width at all times. The loss of transverse spectral information is demonstrated, …
Date: April 27, 2004
Creator: Miles, A
System: The UNT Digital Library