3 Matching Results

Results open in a new window/tab.

Wide Bandgap Extrinsic Photoconductive Switches (open access)

Wide Bandgap Extrinsic Photoconductive Switches

Photoconductive semiconductor switches (PCSS) have been investigated since the late 1970s. Some devices have been developed that withstand tens of kilovolts and others that switch hundreds of amperes. However, no single device has been developed that can reliably withstand both high voltage and switch high current. Yet, photoconductive switches still hold the promise of reliable high voltage and high current operation with subnanosecond risetimes. Particularly since good quality, bulk, single crystal, wide bandgap semiconductor materials have recently become available. In this chapter we will review the basic operation of PCSS devices, status of PCSS devices and properties of the wide bandgap semiconductors 4H-SiC, 6H-SiC and 2H-GaN.
Date: January 17, 2012
Creator: Sullivan, J S
System: The UNT Digital Library
Transition metal complexes of oxazolinylboranes and cyclopentadienyl-bis(oxazolinyl)borates: Catalysts for asymmetric olefin hydroamination and acceptorless alcohol decarbonylation (open access)

Transition metal complexes of oxazolinylboranes and cyclopentadienyl-bis(oxazolinyl)borates: Catalysts for asymmetric olefin hydroamination and acceptorless alcohol decarbonylation

The research presented and discussed in this dissertation involves the synthesis of transition metal complexes of oxazolinylboranes and cyclopentadienyl-bis(oxazolinyl)borates, and their application in catalytic enantioselective olefin hydroamination and acceptorless alcohol decarbonylation. Neutral oxazolinylboranes are excellent synthetic intermediates for preparing new borate ligands and also developing organometallic complexes. Achiral and optically active bis(oxazolinyl)phenylboranes are synthesized by reaction of 2-lithio-2-oxazolide and 0.50 equiv of dichlorophenylborane. These bis(oxazolinyl)phenylboranes are oligomeric species in solid state resulting from the coordination of an oxazoline to the boron center of another borane monomer. The treatment of chiral bis(oxazolinyl)phenylboranes with sodium cyclopentadienide provide optically active cyclopentadienyl-bis(oxazolinyl)borates H[PhB(C{sub 5}H{sub 5})(Ox{sup R}){sub 2}] [Ox{sup R} = Ox{sup 4S-iPr,Me2}, Ox{sup 4R-iPr,Me2}, Ox{sup 4S-tBu]}. These optically active proligands react with an equivalent of M(NMe{sub 2}){sub 4} (M = Ti, Zr, Hf) to afford corresponding cyclopentadienyl-bis(oxazolinyl)borato group 4 complexes {PhB(C{sub 5}H{sub 4})(Ox{sup R}){sub 2}}M(NMe{sub 2}){sub 2} in high yields. These group 4 compounds catalyze cyclization of aminoalkenes at room temperature or below, providing pyrrolidine, piperidine, and azepane with enantiomeric excesses up to 99%. Our mechanistic investigations suggest a non-insertive mechanism involving concerted C−N/C−H bond formation in the turnover limiting step of the catalytic cycle. Among cyclopentadienyl-bis(oxazolinyl)borato group 4 catalysts, the zirconium complex {PhB(C{sub …
Date: December 17, 2012
Creator: Manna, Kuntal
System: The UNT Digital Library
A Cell-Centered Multiphase ALE Scheme With Structural Coupling (open access)

A Cell-Centered Multiphase ALE Scheme With Structural Coupling

None
Date: January 17, 2012
Creator: Dunn, T. A.
System: The UNT Digital Library