Deformation and Fracture of Polycrystalline Lithium Fluoride (open access)

Deformation and Fracture of Polycrystalline Lithium Fluoride

Techniques for forming polycrystalline LiF from the melt and for fabricating test specimens were developed and evaluated using single-crystal LiF as a control. Large -grain polycrystalline specimens tested in fourpoint loading always showed some plastic deformation (0.078 to 0.798%) before fracture, but the plastic flow was sharpiy reduced from that of single crystals. An etch was developed revealing dislocations on all crystallographic faces of LiF. Details of plastic deformation in polycrystalline material were investigated. Deformation was inhomogeneous among the grains of an aggregate because of differences in orientation with respect to the applied stress, also within individual grains because of interactions between adjoining grains. Grain boundaries were barriers to slip, but stresses resulting from slip in one grain were transmitted to neighboring grains and often caused local deformation near the boundary. Because of local stresses, local slip systems operated although the resolved shear stresses on them from the applied load were below the critical yield stress. In one case, slip occurred on an (010) plane. Three-grain junctions were areas of high residual stress. Fractures originated at boundaries at or near 3-grain junctions, not as a result of inherent boundary weakness but rather because of high stresses developed at the boundary. …
Date: September 14, 1962
Creator: Scott, W. D.
System: The UNT Digital Library