Energy and visual comfort performance of electrochromic windowswith overhangs (open access)

Energy and visual comfort performance of electrochromic windowswith overhangs

DOE-2 building energy simulations were conducted to determine if there were practical architectural and control strategy solutions that would enable electrochromic (EC) windows to significantly improve visual comfort without eroding energy-efficiency benefits. EC windows were combined with overhangs since opaque overhangs provide protection from direct sun which EC windows are unable to do alone. The window wall was divided into an upper and lower aperture so that various combinations of overhang position and control strategies could be considered. The overhang was positioned either at the top of the upper window aperture or between the upper and lower apertures. Overhang depth was varied. EC control strategies were fully bleached at all times, modulated based on incident vertical solar radiation limits, or modulated to meet the design work plane illuminance with daylight. The EC performance was compared to a state-of-the-art spectrally selective low-e window with the same divided window wall, window size, and overhang as the EC configuration. The reference window was also combined with an interior shade which was manually deployed to control glare and direct sun. Both systems had the same daylighting control system to dim the electric lighting. Results were given for south-facing private offices in a typical commercial …
Date: November 3, 2005
Creator: Lee, E.S. & Tavil, A.
System: The UNT Digital Library
Probing the Structure-Function Relationships of Microbial Systems (open access)

Probing the Structure-Function Relationships of Microbial Systems

The elucidation of microbial surface architecture and function is critical to determining mechanisms of pathogenesis, immune response, physicochemical properties, environmental resistance and development of countermeasures against bioterrorist agents. We have utilized high-resolution in vitro AFM for studies of structure, assembly, function and environmental dynamics of several microbial systems including bacteria and bacterial spores. Lateral resolutions of {approx}2.0 nm were achieved on pathogens, in vitro. We have demonstrated, using various species of Bacillus and Clostridium bacterial spores, that in vitro AFM can address spatially explicit spore coat protein interactions, structural dynamics in response to environmental changes, and the life cycle of pathogens at near-molecular resolution under physiological conditions. We found that strikingly different species-dependent crystalline structures of the spore coat appear to be a consequence of nucleation and crystallization mechanisms that regulate the assembly of the outer spore coat, and we proposed a unifying mechanism for outer spore coat self-assembly. Furthermore, we revealed molecular-scale transformations of the spore coat during the germination process, which include profound, previously unrecognized changes of the spore coat. We will present data on the direct visualization of stress-induced environmental response of metal-resistant Arthrobacter oxydans bacteria to Cr (VI) exposure, resulting in the formation of a supramolecular …
Date: November 3, 2005
Creator: Plomp, M; Leighton, T J; Holman, H & Malkin, A J
System: The UNT Digital Library
Analyzing flow patterns in unsaturated fractured rock of YuccaMountain using an integrated modeling approach (open access)

Analyzing flow patterns in unsaturated fractured rock of YuccaMountain using an integrated modeling approach

This paper presents a series of modeling investigations to characterize percolation patterns in the unsaturated zone of Yucca Mountain, Nevada, a proposed underground repository site for storing high-level radioactive waste. The investigations are conducted using a modeling approach that integrates a wide variety of moisture, pneumatic, thermal, and isotopic geochemical field data into a comprehensive three-dimensional numerical model through model calibration. This integrated modeling approach, based on a dual-continuum formulation, takes into account the coupled processes of fluid and heat flow and chemical isotopic transport in Yucca Mountain's highly heterogeneous, unsaturated fractured tuffs. In particular, the model results are examined against different types of field-measured data and used to evaluate different hydrogeological conceptual models and their effects on flow patterns in the unsaturated zone. The objective of this work to provide understanding of percolation patterns and flow behavior through the unsaturated zone, which is a crucial issue in assessing repository performance.
Date: November 3, 2003
Creator: Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Pan, Lehua & Bodvarsson,Gudmundur S.
System: The UNT Digital Library
Event Reconstruction for Atmospheric Releases Employing Urban Puff Model UDM with Stochastic Inversion Methodology (open access)

Event Reconstruction for Atmospheric Releases Employing Urban Puff Model UDM with Stochastic Inversion Methodology

The rapid identification of contaminant plume sources and their characteristics in urban environments can greatly enhance emergency response efforts. Source identification based on downwind concentration measurements is complicated by the presence of building obstacles that can cause flow diversion and entrainment. While high-resolution computational fluid dynamics (CFD) simulations are available for predicting plume evolution in complex urban geometries, such simulations require large computational effort. We make use of an urban puff model, the Defence Science Technology Laboratory's (Dstl) Urban Dispersion Model (UDM), which employs empirically based puff splitting techniques. UDM enables rapid urban dispersion simulations by combining traditional Gaussian puff modeling with empirically deduced mixing and entrainment approximations. Here we demonstrate the preliminary reconstruction of an atmospheric release event using stochastic sampling algorithms and Bayesian inference together with the rapid UDM urban puff model based on point measurements of concentration. We consider source inversions for both a prototype isolated building and for observations and flow conditions taken during the Joint URBAN 2003 field campaign at Oklahoma City. The Markov Chain Monte Carlo (MCMC) stochastic sampling method is used to determine likely source term parameters and considers both measurement and forward model errors. It should be noted that the stochastic methodology …
Date: November 3, 2005
Creator: Neuman, S; Glascoe, L; Kosovic, B; Dyer, K; Hanley, W; Nitao, J et al.
System: The UNT Digital Library
Solenoid-free Plasma Start-up in NSTX using Transient CHI (open access)

Solenoid-free Plasma Start-up in NSTX using Transient CHI

Experiments in NSTX have now unambiguously demonstrated the coupling of toroidal plasmas produced by the technique of CHI to inductive sustainment and ramp-up of the toroidal plasma current. This is an important step because an alternate method for plasma startup is essential for developing a fusion reactor based on the spherical torus concept. Elimination of the central solenoid would also allow greater flexibility in the choice of the aspect ratio in tokamak designs now being considered. The transient CHI method for spherical torus startup was originally developed on the HIT-II experiment at the University of Washington.
Date: November 3, 2008
Creator: Raman, R.; Nelson, B. A.; Mueller, D.; Jarboe, T. R.; Bell, M. G.; LeBlanc, B. et al.
System: The UNT Digital Library
The Mercury Project: A High Average Power, Gas-Cooled Laser For Inertial Fusion Energy Development (open access)

The Mercury Project: A High Average Power, Gas-Cooled Laser For Inertial Fusion Energy Development

Hundred-joule, kilowatt-class lasers based on diode-pumped solid-state technologies, are being developed worldwide for laser-plasma interactions and as prototypes for fusion energy drivers. The goal of the Mercury Laser Project is to develop key technologies within an architectural framework that demonstrates basic building blocks for scaling to larger multi-kilojoule systems for inertial fusion energy (IFE) applications. Mercury has requirements that include: scalability to IFE beamlines, 10 Hz repetition rate, high efficiency, and 10{sup 9} shot reliability. The Mercury laser has operated continuously for several hours at 55 J and 10 Hz with fourteen 4 x 6 cm{sup 2} ytterbium doped strontium fluoroapatite (Yb:S-FAP) amplifier slabs pumped by eight 100 kW diode arrays. The 1047 nm fundamental wavelength was converted to 523 nm at 160 W average power with 73% conversion efficiency using yttrium calcium oxy-borate (YCOB).
Date: November 3, 2006
Creator: Bayramian, A.; Armstrong, P.; Ault, E.; Beach, R.; Bibeau, C.; Caird, J. et al.
System: The UNT Digital Library
Using Laser Entrance Hole Shields to Increase Coupling Efficiency in Indirect Drive Ignition Targets for the National Ignition Facility (NIF) (open access)

Using Laser Entrance Hole Shields to Increase Coupling Efficiency in Indirect Drive Ignition Targets for the National Ignition Facility (NIF)

Coupling efficiency, the ratio of the capsule absorbed energy to the driver energy, is a key parameter in ignition targets. The hohlraum originally proposed for NIF coupled {approx}11% of the absorbed laser energy to the capsule as x-rays. We describe here a second generation of hohlraum target which has higher coupling efficiency, {approx}16%. Because the ignition capsule's ability to withstand 3D effects increases rapidly with absorbed energy, the additional energy can significantly increase the likelihood of ignition. The new target includes laser entrance hole (LEH) shields as a principal method for increasing coupling efficiency while controlling symmetry in indirect-drive ICF. The LEH shields are high Z disks placed inside the hohlraum to block the capsule's view of the cold LEHs. The LEH shields can reduce the amount of laser energy required to drive a target to a given temperature via two mechanisms: (1) keeping the temperature high near the capsule pole by putting a barrier between the capsule and the pole, (2) because the capsule pole does not have a view of the cold LEHs, good symmetry requires a shorter hohlraum with less wall area. Current integrated simulations of this class of target couple 140 kJ of x-rays to a …
Date: November 3, 2005
Creator: Callahan, D. A.; Amendt, P. A.; Dewald, E. L.; Haan, S. W.; Hinkel, D. E.; Izumi, N. et al.
System: The UNT Digital Library
Methane Hydrate Formation and Dissociation in a PartiallySaturated Core-Scale Sand Sample (open access)

Methane Hydrate Formation and Dissociation in a PartiallySaturated Core-Scale Sand Sample

We performed a sequence of tests on a partiallywater-saturated sand sample contained in an x-ray transparent aluminumpressure vessel that is conducive to x-ray computed tomography (CT)observation. These tests were performed to gather data for estimation ofthermal properties of the sand/water/gas system and thesand/hydrate/water/gas systems, as well as data to evaluate the kineticnature of hydrate dissociation. The tests included mild thermalperturbations for the estimation of the thermal properties of thesand/water/gas system, hydrate formation, thermal perturbations withhydrate in the stability zone, hydrate dissociation through thermalstimulation, additional hydrate formation, and hydrate dissociationthrough depressurization with thermal stimulation. Density changesthroughout the sample were observed as a result of hydrate formation anddissociation, and these processes induced capillary pressure changes thataltered local water saturation.
Date: November 3, 2005
Creator: Kneafsey, Timothy J.; Tomutsa, Liviu; Moridis, George J.; Seol,Yongkoo; Freifeld, Barry M.; Taylor, Charles E. et al.
System: The UNT Digital Library
Solenoid-free Plasma Start-up in NSTX using Transient CHI (open access)

Solenoid-free Plasma Start-up in NSTX using Transient CHI

Experiments in NSTX have now unambiguously demonstrated the coupling of toroidal plasmas produced by the technique of CHI to inductive sustainment and ramp-up of the toroidal plasma current. This is an important step because an alternate method for plasma startup is essential for developing a fusion reactor based on the spherical torus concept. Elimination of the central solenoid would also allow greater flexibility in the choice of the aspect ratio in tokamak designs now being considered. The transient CHI method for spherical torus startup was originally developed on the HIT-II experiment at the University of Washington.
Date: November 3, 2008
Creator: Raman, R.; Nelson, B. A.; Mueller, D.; Jarboe, T. R.; Bell, M. G.; LeBlanc, B. et al.
System: The UNT Digital Library
SPENT FUEL MANAGEMENT AT THE SAVANNAH RIVER SITE (open access)

SPENT FUEL MANAGEMENT AT THE SAVANNAH RIVER SITE

Spent nuclear fuels are received from reactor sites around the world and are being stored in the L-Basin at the Savannah River Site (SRS) in Aiken, South Carolina. The predominant fuel types are research reactor fuel with aluminum-alloy cladding and aluminum-based fuel. Other fuel materials include stainless steel and Zircaloy cladding with uranium oxide fuel. Chemistry control and corrosion surveillance programs have been established and upgraded since the early 1990's to minimize corrosion degradation of the aluminum cladding materials, so as to maintain fuel integrity and minimize personnel exposure from radioactivity in the basin water. Recent activities have been initiated to support additional decades of wet storage which include fuel inspection and corrosion testing to evaluate the effects of specific water impurity species on corrosion attack.
Date: November 3, 2007
Creator: Vormelker, P; Robert Sindelar, R & Richard Deible, R
System: The UNT Digital Library
Results from the Sudbury Neutrino Observatory Phase III (open access)

Results from the Sudbury Neutrino Observatory Phase III

The third and last phase of the Sudbury Neutrino Observatory (SNO) used a technique independent of previous methods, to measure the rate of neutral-current interactions in heavy water and determine precisely the total active {sup 8}B solar neutrino flux. The total flux obtained is 5.54{sub -0.31}{sup +0.33}(stat){sub -0.34}{sup +0.36}(syst) x 10{sup 6} cm{sup -2}s{sup -1}, in agreement with previous measurements and standard solar models. Results from a global analysis of solar and reactor neutrino give {Delta}m{sup 2} = 7.59{sub -0.21}{sup +0.19} x 10{sup -5} eV{sup 2} and {theta} = 34.4{sub -1.2}{sup +1.3} degrees with a reduced uncertainty on the mixing angle compared to previous phases.
Date: November 3, 2008
Creator: Collaboration, SNO & Prior, G.
System: The UNT Digital Library
Mid infrared observations of Van Maanen 2: no substellar companion. (open access)

Mid infrared observations of Van Maanen 2: no substellar companion.

The results of a comprehensive infrared imaging search for the putative 0.06 M{sub {circle_dot}} astrometric companion to the 4.4 pc white dwarf van Mannen 2 are reported. Adaptive optics images acquired at 3.8 {micro}m reveal a diffraction limited core of 0.09 inch and no direct evidence of a secondary. Models predict that at 5 Gyr, a 50 M{sub J} brown dwarf would be only 1 magnitude fainter than van Maanen 2 at this wavelength and the astrometric analysis suggested a separation of 0.2 inch. In the case of a chance alignment along the line of sight, a 0.4 mag excess should be measured. An independent photometric observation at the same wavelength reveals no excess. In addition, there exist published ISO observations of van Maanen 2 at 6.8 {micro}m and 15.0 {micro}m which are consistent with photospheric flux of a 6750 K white dwarf. If recent brown dwarf models are correct, there is no substellar companion with T{sub eff} {approx}> 500 K.
Date: November 3, 2004
Creator: Farihi, J; Becklin, E & Macintosh, B
System: The UNT Digital Library
Many amino acid substitution variants identified in DNA repair genes during human population screenings are predicted to impact protein function (open access)

Many amino acid substitution variants identified in DNA repair genes during human population screenings are predicted to impact protein function

Over 520 different amino acid substitution variants have been previously identified in the systematic screening of 91 human DNA repair genes for sequence variation. Two algorithms were employed to predict the impact of these amino acid substitutions on protein activity. Sorting Intolerant From Tolerant (SIFT) classified 226 of 508 variants (44%) as ''Intolerant''. Polymorphism Phenotyping (PolyPhen) classed 165 of 489 amino acid substitutions (34%) as ''Probably or Possibly Damaging''. Another 9-15% of the variants were classed as ''Potentially Intolerant or Damaging''. The results from the two algorithms are highly associated, with concordance in predicted impact observed for {approx}62% of the variants. Twenty one to thirty one percent of the variant proteins are predicted to exhibit reduced activity by both algorithms. These variants occur at slightly lower individual allele frequency than do the variants classified as ''Tolerant'' or ''Benign''. Both algorithms correctly predicted the impact of 26 functionally characterized amino acid substitutions in the APE1 protein on biochemical activity, with one exception. It is concluded that a substantial fraction of the missense variants observed in the general human population are functionally relevant. These variants are expected to be the molecular genetic and biochemical basis for the associations of reduced DNA repair …
Date: November 3, 2003
Creator: Xi, T; Jones, I M & Mohrenweiser, H W
System: The UNT Digital Library
Biased deposition of nanocrystalline Be1-x Cux coatings (open access)

Biased deposition of nanocrystalline Be1-x Cux coatings

Coatings of Be{sub 1-x}Cu{sub x} are prepared by magnetron sputter deposition onto spherical polymer mandrels. The application of an applied bias during deposition refines the columnar morphology of the coating and surface finish to the nanoscale. A mechanical testing technique is developed to load the thin-walled spherical capsules under uniaxial tension at constant strain to fracture. The bias-deposited material exhibits an increase in strength by a factor of three or more following a Hall-Petch type relationship with surface roughness.
Date: November 3, 2000
Creator: Jankowski, Alan Frederic
System: The UNT Digital Library
Integration of Nuclear Safeguards Infrastructure Development with UNSCR 1540 Implementation - Context and Challenges (open access)

Integration of Nuclear Safeguards Infrastructure Development with UNSCR 1540 Implementation - Context and Challenges

On 28 April 2004, the UN Security Council adopted Resolution 1540 (2004), obliging States, inter alia, to refrain from supporting by any means non-State actors from developing, acquiring, manufacturing, possessing, transporting, transferring or using nuclear, chemical or biological weapons and their delivery systems. It imposes binding obligations on all States to establish domestic controls to prevent the proliferation of nuclear, chemical and biological weapons, and their means of delivery, including by establishing appropriate controls over related materials. This mandate was extended an additional two years with the adoption of Resolution 1673 (2006) and an additional three years with the adoption of Resolution 1810 (2008). UNSCR 1540 is a key nonproliferation and counterterrorism tool that needs to be implemented well. Its obligations are a core part of nuclear infrastructure development.
Date: November 3, 2008
Creator: Dreicer, M & Essner, J
System: The UNT Digital Library
High-Precision Computation and Mathematical Physics (open access)

High-Precision Computation and Mathematical Physics

At the present time, IEEE 64-bit floating-point arithmetic is sufficiently accurate for most scientific applications. However, for a rapidly growing body of important scientific computing applications, a higher level of numeric precision is required. Such calculations are facilitated by high-precision software packages that include high-level language translation modules to minimize the conversion effort. This paper presents a survey of recent applications of these techniques and provides some analysis of their numerical requirements. These applications include supernova simulations, climate modeling, planetary orbit calculations, Coulomb n-body atomic systems, scattering amplitudes of quarks, gluons and bosons, nonlinear oscillator theory, Ising theory, quantum field theory and experimental mathematics. We conclude that high-precision arithmetic facilities are now an indispensable component of a modern large-scale scientific computing environment.
Date: November 3, 2008
Creator: Bailey, David H. & Borwein, Jonathan M.
System: The UNT Digital Library
Genome analysis of the Anerobic Thermohalophilic bacterium Halothermothrix orenii (open access)

Genome analysis of the Anerobic Thermohalophilic bacterium Halothermothrix orenii

Halothermothirx orenii is a strictly anaerobic thermohalophilic bacterium isolated from sediment of a Tunisian salt lake. It belongs to the order Halanaerobiales in the phylum Firmicutes. The complete sequence revealed that the genome consists of one circular chromosome of 2578146 bps encoding 2451 predicted genes. This is the first genome sequence of an organism belonging to the Haloanaerobiales. Features of both Gram positive and Gram negative bacteria were identified with the presence of both a sporulating mechanism typical of Firmicutes and a characteristic Gram negative lipopolysaccharide being the most prominent. Protein sequence analyses and metabolic reconstruction reveal a unique combination of strategies for thermophilic and halophilic adaptation. H. orenii can serve as a model organism for the study of the evolution of the Gram negative phenotype as well as the adaptation under thermohalophilic conditions and the development of biotechnological applications under conditions that require high temperatures and high salt concentrations.
Date: November 3, 2008
Creator: Mavromatis, Konstantinos; Ivanova, Natalia; Anderson, Iain; Lykidis, Athanasios; Hooper, Sean D.; Sun, Hui et al.
System: The UNT Digital Library
Constraints and Casimirs for Super Poincare and Supertranslation Algebras in various dimensions (open access)

Constraints and Casimirs for Super Poincare and Supertranslation Algebras in various dimensions

We describe, for arbitrary dimensions the construction of a covariant and supersymmetric constraint for the massless Super Poincare algebra and we show that the constraint fixes uniquely the representation of the algebra. For the case of finite mass and in the absence of central charges we discuss a similar construction, which generalizes to arbitrary dimensions the concept of the superspin Casimir. Finally we discuss briefly the modifications introduced by central charges, both scalar and tensorial.
Date: November 3, 2004
Creator: Zumino, Bruno
System: The UNT Digital Library
Modified Rate-Theory Predictions in Comparison to Microstructural Data (open access)

Modified Rate-Theory Predictions in Comparison to Microstructural Data

Standard rate theory methods have recently been combined with experimental microstructures to successfully reproduce measured swelling behavior in ternary steels around 400 C. Fit parameters have reasonable values except possibly for the recombination radius, R{sub c}, which can be larger than expected. Numerical simulations of void nucleation and growth reveal the importance additional recombination processes at unstable clusters. Such extra recombination may reduce the range of possible values for R{sub c}. A modified rate theory is presented here that includes the effect of these undetectably small defect clusters. The fit values for R{sub c} are not appreciably altered, as the modification has little effect on the model behavior in the late steady state. It slightly improves the predictions for early transient times, when the sink strength of stable voids and dislocations is relatively small. Standard rate theory successfully explains steady swelling behavior in high purity stainless steel.
Date: November 3, 2003
Creator: Surh, M. P.; Okita, T. & Wolfer, W. G.
System: The UNT Digital Library
SCC Initiation in Alloy 600 Heat Affected Zones Exposed to High Temperature Water (open access)

SCC Initiation in Alloy 600 Heat Affected Zones Exposed to High Temperature Water

Studies have shown that grain boundary chromium carbides improve the stress corrosion cracking (SCC) resistance of nickel based alloys exposed to high temperature, high purity water. However, thermal cycles from welding can significantly alter the microstructure of the base material near the fusion line. In particular, the heat of welding can solutionize grain boundary carbides and produce locally high residual stresses and strains, reducing the SCC resistance of the Alloy 600 type material in the heat affected zone (HAZ). Testing has shown that the SCC growth rate in Alloy 600 heat affected zone samples can be {approx}30x faster than observed in the Alloy 600 base material under identical testing conditions due to fewer intergranular chromium rich carbides and increased plastic strain in the HAZ [1, 2]. Stress corrosion crack initiation tests were conducted on Alloy 600 HAZ samples at 360 C in hydrogenated, deaerated water to determine if these microstructural differences significantly affect the SCC initiation resistance of Alloy 600 heat affected zones compared to the Alloy 600 base material. Alloy 600 to EN82H to Alloy 600 heat-affected-zone (HAZ) specimens where fabricated from an Alloy 600 to Alloy 600 narrow groove weld with EN82H filler metal. The approximate middle third …
Date: November 3, 2006
Creator: Richey, E.; Morton, D. S.; Etien, R. A.; Young, G. A. & Bucinell, R. B.
System: The UNT Digital Library
Mechanisms for Fatigue of Micron-Scale Silicon StructuralFilms (open access)

Mechanisms for Fatigue of Micron-Scale Silicon StructuralFilms

Although bulk silicon is not susceptible to fatigue,micron-scale silicon is. Several mechanisms have been proposed to explainthis surprising behavior although the issue remains contentious. Here wedescribe published fatigue results for micron-scale thin siliconfilms andfind that in general they display similar trends, in that lower cyclicstresses result in larger number of cycles to failure in stress-lifetimedata. We further show that one of two classes of mechanisms is invariablyproposed to explain the phenomenon. The first class attributes fatigue toa surface effect caused by subcritical (stable) cracking in thesilicon-oxide layer, e.g., reaction-layer fatigue; the second classproposes that subcritical cracking in the silicon itself is the cause offatigue in Si films. It is our contention that results to date fromsingle and poly crystalline silicon fatigue studies provide no convincingexperimentalevidence to support subcritical cracking in the silicon.Conversely, the reaction-layer mechanism is consistent with existingexperimental results, and moreover provides a rational explanation forthe marked difference in fatigue behavior of bulk and micron-scalesilicon.
Date: November 3, 2006
Creator: Alsem, Daan Hein; Pierron, Olivier N.; Stach, Eric A.; Muhlstein,Christopher L. & Ritchie, Robert O.
System: The UNT Digital Library
On the Sensitivity of Atmospheric Model Implied Ocean Heat Transport to the Dominant Terms of the Surface Energy Balance (open access)

On the Sensitivity of Atmospheric Model Implied Ocean Heat Transport to the Dominant Terms of the Surface Energy Balance

The oceanic meridional heat transport (T{sub o}) implied by an atmospheric General Circulation Model (GCM) can help evaluate a model's readiness for coupling with an ocean GCM. In this study we examine the T{sub o} from benchmark experiments of the Atmospheric Model Intercomparison Project, and evaluate the sensitivity of T{sub o} to the dominant terms of the surface energy balance. The implied global ocean TO in the Southern Hemisphere of many models is equatorward, contrary to most observationally-based estimates. By constructing a hybrid (model corrected by observations) T{sub o}, an earlier study demonstrated that the implied heat transport is critically sensitive to the simulated shortwave cloud radiative effects, which have been argued to be principally responsible for the Southern Hemisphere problem. Systematic evaluation of one model in a later study suggested that the implied T{sub o} could be equally as sensitive to a model's ocean surface latent heat flux. In this study we revisit the problem with more recent simulations, making use of estimates of ocean surface fluxes to construct two additional hybrid calculations. The results of the present study demonstrate that indeed the implied T{sub o} of an atmospheric model is very sensitive to problems in not only the …
Date: November 3, 2004
Creator: Gleckler, P J
System: The UNT Digital Library
Thermal Stability and Mechanical Behavior of Ultra-Fine Bcc Ta and v Coatings (open access)

Thermal Stability and Mechanical Behavior of Ultra-Fine Bcc Ta and v Coatings

Ultra-refined microstructures of both tantalum (Ta) and vanadium (V) are produced using electron-beam evaporation and magnetron sputtering deposition. The thermal stability of the micron-to-submicron grain size foils is examined to quantify the kinetics and activation energy of diffusion, as well as identify the temperature transition in dominant mechanism from grain boundary to lattice diffusion. The activation energies for boundary diffusion in Ta and V determined from grain growth are 0.3 and 0.2 eV{center_dot}atom{sup -1}, respectively, versus lattice diffusion values of 4.3 and 3.2 eV{center_dot}atom{sup -1}, respectively. The mechanical behavior, as characterized by strength and hardness, is found to inversely scale with square-root grain size according to the Hall-Petch relationship. The strength of Ta and V increases two-fold from 400 MPa, as the grain size decreases from 2 to 0.75 {micro}m.
Date: November 3, 2006
Creator: Jankowski, Alan Frederic; Go, J. & Hayes, J. P.
System: The UNT Digital Library
Genome-wide de Novo Prediction of Proximal and Distal Tissue-Specific Enhancers (open access)

Genome-wide de Novo Prediction of Proximal and Distal Tissue-Specific Enhancers

Determining how transcriptional regulatory networks are encoded in the human genome is essential for understanding how cellular processes are directed. Here, we present a novel approach for systematically predicting tissue specific regulatory elements (REs) that blends genome-wide expression profiling, vertebrate genome comparisons, and pattern analysis of transcription factor binding sites. This analysis yields 4,670 candidate REs in the human genome with distinct tissue specificities, the majority of which reside far away from transcription start sites. We identify key transcription factors (TFs) for 34 distinct tissues and demonstrate that tissue-specific gene expression relies on multiple regulatory pathways employing similar, but different cohorts of interacting TFs. The methods and results we describe provide a global view of tissue specific gene regulation in humans, and propose a strategy for deciphering the transcriptional regulatory code in eukaryotes.
Date: November 3, 2005
Creator: Loots, G G & Ovcharenko, I V
System: The UNT Digital Library