71 Matching Results

Results open in a new window/tab.

Echo-seeding options for LCLS-II (open access)

Echo-seeding options for LCLS-II

The success of LCLS has opened up a new era of x-ray sciences. An upgrade to LCLS is currently being planned to enhance its capabilities. In this paper we study the feasibility of using the echo-enabled harmonic generation (EEHG) technique to generate narrow bandwidth soft x-ray radiation in the proposed LCLS-II soft x-ray beam line. We focus on the conceptual design, the technical implementation and the expected performances of the echo-seeding scheme. We will also show how the echo-seeding scheme allows one to generate two color x-ray pulses with the higher energy photons leading the lower energy ones as is favored in the x-ray pump-probe experiments.
Date: September 14, 2010
Creator: Xiang, Dao
System: The UNT Digital Library
Workshop on Energy Research Opportunities for Physics Graduates & Postdocs (open access)

Workshop on Energy Research Opportunities for Physics Graduates & Postdocs

Young people these days are very concerned about the environment. There is also a great deal of interest in using technology to improve energy efficiency. Many physics students share these concerns and would like to find ways to use their scientific and quantitative skills to help overcome the environmental challenges that the world faces. This may be particularly true for female students. Showing physics students how they can contribute to environmental and energy solutions while doing scientific research which excites them is expected to attract more physicists to work on these very important problems and to retain more of the best and the brightest in physical science. This is a major thrust of the 'Gathering Storm' report, the 'American Competitiveness Initiative' report, and several other studies. With these concerns in mind, the American Physical Society (APS) and more specifically, the newly formed APS Topical Group on Energy Research and Applications (GERA), organized and conducted a one-day workshop for graduate students and post docs highlighting the contributions that physics-related research can make to meeting the nation's energy needs in environmentally friendly ways. A workshop program committee was formed and met four times by conference call to determine session topics and to …
Date: March 14, 2010
Creator: Kirby, Kate
System: The UNT Digital Library
Design of the Second-Generation ILC Marx Modulator (open access)

Design of the Second-Generation ILC Marx Modulator

SLAC National Accelerator Laboratory (SLAC) has initiated a program to design and build a Marx-topology modulator to produce a relatively compact, low-cost, high availability klystron modulator for the International Linear Collider (ILC). Building upon the success of the P1 Marx, the SLAC P2 Marx is a second-generation modulator whose design further emphasizes the qualities of modularity and high-availability. This paper outlines highlights of this design and presents single-cell performance data obtained during the proof-of-concept phase of the project.
Date: September 14, 2010
Creator: Kemp, M. A.; Benwell, A.; Burkhart, C.; Larsen, R.; MacNair, D.; Nguyen, M. et al.
System: The UNT Digital Library
Comparison of Demand Response Performance with an EnergyPlus Model in a Low Energy Campus Building (open access)

Comparison of Demand Response Performance with an EnergyPlus Model in a Low Energy Campus Building

We have studied a low energy building on a campus of the University of California. It has efficient heating, ventilation, and air conditioning (HVAC) systems, consisting of a dual-fan/dual-duct variable air volume (VAV) system. As a major building on the campus, it was included in two demand response (DR) events in the summers of 2008 and 2009. With chilled water supplied by thermal energy storage in the central plant, cooling fans played a critical role during DR events. In this paper, an EnergyPlus model of the building was developed and calibrated. We compared both whole-building and HVAC fan energy consumption with model predictions to understand why demand savings in 2009 were much lower than in 2008. We also used model simulations of the study building to assess pre-cooling, a strategy that has been shown to improve demand saving and thermal comfort in many types of building. This study indicates a properly calibrated EnergyPlus model can reasonably predict demand savings from DR events and can be useful for designing or optimizing DR strategies.
Date: May 14, 2010
Creator: Dudley, Junqiao Han; Black, Doug; Apte, Mike; Piette, Mary Ann & Berkeley, Pam
System: The UNT Digital Library
Using Nuclear Resonance Fluorescence for Nondestructive Isotopic Analysis (open access)

Using Nuclear Resonance Fluorescence for Nondestructive Isotopic Analysis

Nuclear resonance fluorescence (NRF) has been studied as one of the nondestructive analysis (NDA) techniques currently being investigated by a multi-laboratory collaboration for the determination of Pu mass in spent fuel. In NRF measurements specific isotopes are identified by their characteristic lines in recorded gamma spectra. The concentration of an isotope in a material can be determined from measured NRF signal intensities if NRF cross sections and assay geometries are known. The potential of NRF to quantify isotopic content and Pu mass in spent fuel has been studied. The addition of NRF data to MCNPX and an improved treatment of the elastic photon scattering at backward angles has enabled us to more accurately simulate NRF measurements on spent fuel assemblies. Using assembly models from the spent fuel assembly library generated at LANL, NRF measurements are simulated to find the best measurement configurations, and to determine measurement sensitivities and times, and photon source and gamma detector requirements. A first proof-of-principal measurement on a mock-up assembly with a bremsstrahlung photon source demonstrated isotopic sensitivity to approximately 1% limited by counting statistics. Data collection rates are likely a limiting factor of NRF-based measurements of fuel assemblies but new technological advances may lead to …
Date: July 14, 2010
Creator: Ludewigt, Bernhard A.; Mozin, Vladimir; Haefner, Andrew & Quiter, Brian
System: The UNT Digital Library
Solar access of residential rooftops in four California cities (open access)

Solar access of residential rooftops in four California cities

Shadows cast by trees and buildings can limit the solar access of rooftop solar-energy systems, including photovoltaic panels and thermal collectors. This study characterizes residential rooftop shading in Sacramento, San Jose, Los Angeles and San Diego, CA. Our analysis can be used to better estimate power production and/or thermal collection by rooftop solar-energy equipment. It can also be considered when designing programs to plant shade trees. High-resolution orthophotos and LiDAR (Light Detection And Ranging) measurements of surface height were used to create a digital elevation model of all trees and buildings in a well-treed 2.5-4 km{sup 2} residential neighborhood. On-hour shading of roofing planes (the flat elements of roofs) was computed geometrically from the digital elevation model. Values in future years were determined by repeating these calculations after simulating tree growth. Parcel boundaries were used to determine the extent to which roofing planes were shaded by trees and buildings in neighboring parcels. For the subset of S+SW+W-facing planes on which solar equipment is commonly installed for maximum solar access, absolute light loss in spring, summer and fall peaked about two to four hours after sunrise and about two to four hours before sunset. The fraction of annual insolation lost to …
Date: May 14, 2010
Creator: Levinson, Ronnen; Akbari, Hashem & Pomerantz, Melvin
System: The UNT Digital Library
Chemical Dynamics, Molecular Energetics, and Kinetics at the Synchrotron (open access)

Chemical Dynamics, Molecular Energetics, and Kinetics at the Synchrotron

Scientists at the Chemical Dynamics Beamline of the Advanced Light Source in Berkeley are continuously reinventing synchrotron investigations of physical chemistry and chemical physics with vacuum ultraviolet light. One of the unique aspects of a synchrotron for chemical physics research is the widely tunable vacuum ultraviolet light that permits threshold ionization of large molecules with minimal fragmentation. This provides novel opportunities to assess molecular energetics and reaction mechanisms, even beyond simple gas phase molecules. In this perspective, significant new directions utilizing the capabilities at the Chemical Dynamics Beamline are presented, along with an outlook for future synchrotron and free electron laser science in chemical dynamics. Among the established and emerging fields of investigations are cluster and biological molecule spectroscopy and structure, combustion flame chemistry mechanisms, radical kinetics and product isomer dynamics, aerosol heterogeneous chemistry, planetary and interstellar chemistry, and secondary neutral ion-beam desorption imaging of biological matter and materials chemistry.
Date: March 14, 2010
Creator: Leone, Stephen R.; Ahmed, Musahid & Wilson, Kevin R.
System: The UNT Digital Library
Early Events in Ionic Liquid Radiation Chemistry (open access)

Early Events in Ionic Liquid Radiation Chemistry

Ionic liquids are interesting and useful materials whose solvation time scales are up to thousands of times longer than in conventional solvents. The extended lifetimes of pre-solvated electrons and other energetic species in ionic liquids has profound consequences for the radiolytic product distributions and reactivity patterns. We use a newly developed, multiplexed variation of pulse-probe spectroscopy to measure the kinetics of the early dynamical and reactive events in ionic liquids.
Date: September 14, 2010
Creator: Wishart, J. F.; Cook, A.; Rimmer, R. D. & Gohdo, M.
System: The UNT Digital Library
Characterization of Second Harmonic Afterburner Radiation at the LCLS (open access)

Characterization of Second Harmonic Afterburner Radiation at the LCLS

During commissioning of the Linac Coherent Light Source (LCLS) x-ray Free Electron Laser (FEL) at the SLAC National Accelerator Laboratory it was shown that saturation lengths much shorter than the installed length of the undulator line can routinely be achieved. This frees undulator segments that can be used to provide enhanced spectral properties and at the same time, test the concept of FEL Afterburners. In December 2009 a project was initiated to convert undulator segments at the down-beam end of the undulator line into Second Harmonic Afterburners (SHAB) to enhance LCLS radiation levels in the 10-20 keV energy range. This is being accomplished by replacement of gap-shims increasing the fixed gaps from 6.8 mm to 9.9 mm, which reduces their K values from 3.50 to 2.25 and makes the segments resonant at the second harmonic of the upstream unmodified undulators. This paper reports experimental results of the commissioning of the SHAB extension to LCLS.
Date: September 14, 2010
Creator: Nuhn, Heinz-Dieter
System: The UNT Digital Library
Benzene-derived N2-(4-hydroxyphenyl)-deoxyguanosine adduct: UvrABC incision and its conformation in DNA (open access)

Benzene-derived N2-(4-hydroxyphenyl)-deoxyguanosine adduct: UvrABC incision and its conformation in DNA

Benzene, a ubiquitous human carcinogen, forms DNA adducts through its metabolites such as p-benzoquinone (p-BQ) and hydroquinone (HQ). N(2)-(4-Hydroxyphenyl)-2'-deoxyguanosine (N(2)-4-HOPh-dG) is the principal adduct identified in vivo by (32)P-postlabeling in cells or animals treated with p-BQ or HQ. To study its effect on repair specificity and replication fidelity, we recently synthesized defined oligonucleotides containing a site-specific adduct using phosphoramidite chemistry. We here report the repair of this adduct by Escherichia coli UvrABC complex, which performs the initial damage recognition and incision steps in the nucleotide excision repair (NER) pathway. We first showed that the p-BQ-treated plasmid was efficiently cleaved by the complex, indicating the formation of DNA lesions that are substrates for NER. Using a 40-mer substrate, we found that UvrABC incises the DNA strand containing N(2)-4-HOPh-dG in a dose- and time-dependent manner. The specificity of such repair was also compared with that of DNA glycosylases and damage-specific endonucleases of E. coli, both of which were found to have no detectable activity toward N(2)-4-HOPh-dG. To understand why this adduct is specifically recognized and processed by UvrABC, molecular modeling studies were performed. Analysis of molecular dynamics trajectories showed that stable G:C-like hydrogen bonding patterns of all three Watson-Crick hydrogen bonds are …
Date: June 14, 2010
Creator: Hang, Bo; Rodriguez, Ben; Yang, Yanu; Guliaev, Anton B. & Chenna, Ahmed
System: The UNT Digital Library
MEASUREMENT OF TRITIUM DURING VOLOXIDATION OF ZIRCALOY-2 FUEL HULLS (open access)

MEASUREMENT OF TRITIUM DURING VOLOXIDATION OF ZIRCALOY-2 FUEL HULLS

A straightforward method to evaluate the tritium content of Zircaloy-2 cladding hulls via oxidation of the hull and capture of the volatilized tritium in liquids has been demonstrated. Hull samples were heated in air inside a thermogravimetric analyzer (TGA). The TGA was rapidly heated to 1000 C to oxidize the hulls and release absorbed tritium. To capture tritium, the TGA off-gas was bubbled through a series of liquid traps. The concentrations of tritium in bubbler solutions indicated that tritiated water vapor was captured nearly quantitatively. The average tritium content measured in the hulls was 19% of the amount of tritium produced by the fuel, according to ORIGEN2 isotope generation and depletion calculations. Published experimental data show that Zircaloy-2 oxidation follows an Arrhenius model, and that an initial, nonlinear oxidation rate is followed by a faster, linear rate after 'breakaway' of the oxide film. This study demonstrates that the linear oxidation rate of Zircaloy samples at 974 C is faster than predicted by the extrapolation of data from lower temperatures.
Date: October 14, 2010
Creator: Crowder, M.; Laurinat, J. & Stillman, J.
System: The UNT Digital Library
Hybrid Parallelism for Volume Rendering on Large, Multi-core Systems (open access)

Hybrid Parallelism for Volume Rendering on Large, Multi-core Systems

This work studies the performance and scalability characteristics of"hybrid" parallel programming and execution as applied to raycasting volume rendering -- a staple visualization algorithm -- on a large, multi-core platform. Historically, the Message Passing Interface (MPI) has become the de-facto standard for parallel programming and execution on modern parallel systems. As the computing industry trends towards multi-core processors, with four- and six-core chips common today and 128-core chips coming soon, we wish to better understand how algorithmic and parallel programming choices impact performance and scalability on large, distributed-memory multi-core systems. Our findings indicate that the hybrid-parallel implementation, at levels of concurrency ranging from 1,728 to 216,000, performs better, uses a smaller absolute memory footprint, and consumes less communication bandwidth than the traditional, MPI-only implementation.
Date: June 14, 2010
Creator: Howison, Mark; Bethel, E. Wes & Childs, Hank
System: The UNT Digital Library
IDENTIFYING IMPURITIES IN SURPLUS NON PIT PLUTONIUM FEEDS FOR MOX OR ALTERNATIVE DISPOSITION (open access)

IDENTIFYING IMPURITIES IN SURPLUS NON PIT PLUTONIUM FEEDS FOR MOX OR ALTERNATIVE DISPOSITION

This report provides a technical basis for estimating the level of corrosion products in materials stored in DOE-STD-3013 containers based on extrapolating available chemical sample results. The primary focus is to estimate the levels of nickel, iron, and chromium impurities in plutonium-bearing materials identified for disposition in the United States Mixed Oxide fuel process.
Date: July 14, 2010
Creator: Allender, J & Moore, E
System: The UNT Digital Library
Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain (open access)

Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain

Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective 'cool colored' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland U.S. latitudes, this metric RE891BN can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {le} 5:12 [23{sup o}]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool-roof net energy savings by as much as 23%. We define clear-sky air mass one global horizontal ('AM1GH') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} …
Date: May 14, 2010
Creator: Levinson, Ronnen; Akbari, Hashem & Berdahl, Paul
System: The UNT Digital Library
Scenario Analysis of Peak Demand Savings for Commercial Buildings with Thermal Mass in California (open access)

Scenario Analysis of Peak Demand Savings for Commercial Buildings with Thermal Mass in California

This paper reports on the potential impact of demand response (DR) strategies in commercial buildings in California based on the Demand Response Quick Assessment Tool (DRQAT), which uses EnergyPlus simulation prototypes for office and retail buildings. The study describes the potential impact of building size, thermal mass, climate, and DR strategies on demand savings in commercial buildings. Sensitivity analyses are performed to evaluate how these factors influence the demand shift and shed during the peak period. The whole-building peak demand of a commercial building with high thermal mass in a hot climate zone can be reduced by 30percent using an optimized demand response strategy. Results are summarized for various simulation scenarios designed to help owners and managers understand the potential savings for demand response deployment. Simulated demand savings under various scenarios were compared to field-measured data in numerous climate zones, allowing calibration of the prototype models. The simulation results are compared to the peak demand data from the Commercial End-Use Survey for commercial buildings in California. On the economic side, a set of electricity rates are used to evaluate the impact of the DR strategies on economic savings for different thermal mass and climate conditions. Our comparison of recent simulation …
Date: May 14, 2010
Creator: Yin, Rongxin; Kiliccote, Sila; Piette, Mary Ann & Parrish, Kristen
System: The UNT Digital Library
Measuring solar reflectance Part II: Review of practical methods (open access)

Measuring solar reflectance Part II: Review of practical methods

A companion article explored how solar reflectance varies with surface orientation and solar position, and found that clear sky air mass 1 global horizontal (AM1GH) solar reflectance is a preferred quantity for estimating solar heat gain. In this study we show that AM1GH solar reflectance R{sub g,0} can be accurately measured with a pyranometer, a solar spectrophotometer, or an updated edition of the Solar Spectrum Reflectometer (version 6). Of primary concern are errors that result from variations in the spectral and angular distributions of incident sunlight. Neglecting shadow, background and instrument errors, the conventional pyranometer technique can measure R{sub g,0} to within 0.01 for surface slopes up to 5:12 [23{sup o}], and to within 0.02 for surface slopes up to 12:12 [45{sup o}]. An alternative pyranometer method minimizes shadow errors and can be used to measure R{sub g,0} of a surface as small as 1 m in diameter. The accuracy with which it can measure R{sub g,0} is otherwise comparable to that of the conventional pyranometer technique. A solar spectrophotometer can be used to determine R*{sub g,0}, a solar reflectance computed by averaging solar spectral reflectance weighted with AM1GH solar spectral irradiance. Neglecting instrument errors, R*{sub g,0} matches R{sub g,0} …
Date: May 14, 2010
Creator: Levinson, Ronnen; Akbari, Hashem & Berdahl, Paul
System: The UNT Digital Library
Monte Carlo Studies of the Radiation Fields in the Linac Coherent Light Source Undulators and of the Corresponding Signals in the Cerenkov Beam Loss Monitors (open access)

Monte Carlo Studies of the Radiation Fields in the Linac Coherent Light Source Undulators and of the Corresponding Signals in the Cerenkov Beam Loss Monitors

In 2009 the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Center started free electron laser (FEL) operation. In order to continue to produce the bright and short-pulsed x-ray laser demanded by FEL scientists, this pioneer hard x-ray FEL requires a perfectly tailored magnetic field at the undulators, so that the photons generated at the electron wiggling path interact at the right phase with the electron beam. In such a precise system, small (>0.01%) radiation-induced alterations of the magnetic field in the permanent magnets could affect FEL performance. This paper describes the simulation studies of radiation fields in permanent magnets and the expected signal in the detectors. The transport of particles from the radiation sources (i.e. diagnostic insert) to the undulator magnets and to the beam loss monitors (BLM) was simulated with the intra nuclear cascade codes FLUKA and MARS15. In order to accurately reproduce the optics of LCLS, lattice capabilities and magnetic fields were enabled in FLUKA and betatron oscillations were validated against reference data. All electron events entering the BLMs were printed in data files. The paper also introduces the Radioactive Ion Beam Optimizer (RIBO) Monte Carlo 3-D code, which was used to read from the …
Date: September 14, 2010
Creator: Santana Leitner, Mario
System: The UNT Digital Library
LHC Beam Diffusion Dependence on RF Noise: Models And Measurements (open access)

LHC Beam Diffusion Dependence on RF Noise: Models And Measurements

Radio Frequency (RF) accelerating system noise and non-idealities can have detrimental impact on the LHC performance through longitudinal motion and longitudinal emittance growth. A theoretical formalism has been developed to relate the beam and RF loop dynamics with the bunch length growth [1]. Measurements were conducted at LHC to validate the formalism, determine the performance limiting RF components, and provide the foundation for beam diffusion estimates for higher energies and intensities. A brief summary of these results is presented in this work. During a long store, the relation between the energy lost to synchrotron radiation and the noise injected to the beam by the RF accelerating voltage determines the growth of the bunch energy spread and longitudinal emittance. Since the proton synchrotron radiation in the LHC is very low, the beam diffusion is extremely sensitive to RF perturbations. The theoretical formalism presented in [1], suggests that the noise experienced by the beam depends on the cavity phase noise power spectrum, filtered by the beam transfer function, and aliased due to the periodic sampling of the accelerating voltage signal V{sub c}. Additionally, the dependence of the RF accelerating cavity noise spectrum on the Low Level RF (LLRF) configurations has been predicted …
Date: September 14, 2010
Creator: Mastorides, T.; Rivetta, C.; Fox, J. D.; Van Winkle, D.; Baudrenghien, P.; Butterworth, A. et al.
System: The UNT Digital Library
Minimal Doubling and Point Splitting (open access)

Minimal Doubling and Point Splitting

Minimally-doubled chiral fermions have the unusual property of a single local field creating two fermionic species. Spreading the field over hypercubes allows construction of combinations that isolate specific modes. Combining these fields into bilinears produces meson fields of specific quantum numbers. Minimally-doubled fermion actions present the possibility of fast simulations while maintaining one exact chiral symmetry. They do, however, introduce some peculiar aspects. An explicit breaking of hyper-cubic symmetry allows additional counter-terms to appear in the renormalization. While a single field creates two different species, spreading this field over nearby sites allows isolation of specific states and the construction of physical meson operators. Finally, lattice artifacts break isospin and give two of the three pseudoscalar mesons an additional contribution to their mass. Depending on the sign of this mass splitting, one can either have a traditional Goldstone pseudoscalar meson or a parity breaking Aoki-like phase.
Date: June 14, 2010
Creator: Creutz, M.
System: The UNT Digital Library
Precise Predictions for W 4 Jet Production at the Large Hadron Collider (open access)

Precise Predictions for W 4 Jet Production at the Large Hadron Collider

We present the first next-to-leading order QCD results for W + 4-jet production at hadron colliders. Total cross sections, as well as distributions in the jet transverse momenta and in the total transverse energy HT, are provided for the initial LHC energy of {radical}s = 7 TeV. We use a leading-color approximation, known to be accurate to 3% for W production with fewer jets. The virtual matrix elements and the most complicated real-emission matrix elements are handled by the BlackHat library, based on on-shell methods. The remaining parts of the calculation, including the integration over phase space, are performed by the SHERPA package.
Date: September 14, 2010
Creator: Berger, C.F.; /MIT, LNS; Bern, Z.; /UCLA; Dixon, Lance J.; /SLAC, /CERN et al.
System: The UNT Digital Library
Three-Dimensional Analysis of Frequency-Chirped FELs (open access)

Three-Dimensional Analysis of Frequency-Chirped FELs

Frequency-chirped free-electron lasers (FELs) are useful to generate a large photon bandwidth or a shorter x-ray pulse duration. In this paper, we present a three-dimensional analysis of a high-gain FEL driven by the energy-chirped electron beam. We show that the FEL eigenmode equation is the same for a frequency-chirped FEL as for an undulator-tapered FEL. We study the transverse effects of such FELs including mode properties and transverse coherence.
Date: September 14, 2010
Creator: Zhirong, Huang
System: The UNT Digital Library
Algorithm for Computation of Electromagnetic Fields of An Accelerated Short Bunch Inside a Rectangular Chamber (open access)

Algorithm for Computation of Electromagnetic Fields of An Accelerated Short Bunch Inside a Rectangular Chamber

We discuss the feasibility of an application of an implicit finite-difference approximation to calculate the fields of a relativistic bunch moving with no restriction inside a vacuum chamber. We assume that a bunch trajectory is not straight but is inside a vacuum chamber or its branch. The bunch can be deflected by the fields of bending magnets. The bunch can be short enough to produce coherent synchrotron radiation (CSR). Accelerator physicists believe that electromagnetic phenomena of charged beams are governed by Maxwell's equations together with Newton's equations for particle dynamics. To understand the behavior of the beams and radiated fields we just need to find a solution to these equations for the case, which can fully describe the real accelerator environment. So, at first we make a model, which contains all the necessary components, but at the same time can be easily 'inserts' into the equations. Sometimes, it is possible to find analytical solutions, but usually they are only work for one-dimensional cases and rarer for two-dimension cases. To find a solution in general we may transform the equations into a equivalent finite-difference form and solve them using computers. We can find a lot of finite-difference schemes, which approximate Maxwell's …
Date: September 14, 2010
Creator: Novokhatski, Alexander & Sullivan, Michael
System: The UNT Digital Library
Toward the Holy Grail of Perfect Information: Lessons Learned Implementing an Energy Information System in a Commercial Building (open access)

Toward the Holy Grail of Perfect Information: Lessons Learned Implementing an Energy Information System in a Commercial Building

Energy information systems (real-time acquisition, analysis, and presentation of information from energy end-uses) in commercial buildings have demonstrated value as tools for improving energy efficiency and thermal comfort. These improvements include characterization through benchmarking, identification of retrofit opportunities, anomaly detection to inform retro-commissioning, and feedback to occupants to encourage shifts in behavior. Energy information systems can play a vital role in achieving a variety of ambitious sustainability goals for the existing stock of commercial buildings, but their implementation is often fraught with pitfalls. In this paper, we present a case study of an EIS and sub-metering project executed in a representative commercial office building. We describe the building, highlight a few of its problems, and detail the hardware and software technologies we employed to address them. We summarize the difficulties encountered and lessons learned, and suggest general guidelines for future EIS projects to improve performance and save energy in the commercial building fleet. These guidelines include measurement criteria, monitoring strategies, and analysis methods. In particular, we propose processes for: - Defining project goals, - Selecting end-use targets and depth of metering, - Selecting contractors and software vendors, - Installing and networking measurement devices, - Commissioning and using the energy information …
Date: May 14, 2010
Creator: Kircher, Kevin; Ghatikar, Girish; Greenberg, Steve; Watson, Dave; Diamond, Rick; Sartor, Dale et al.
System: The UNT Digital Library
Findings from Seven Years of Field Performance Data for Automated Demand Response in Commercial Buildings (open access)

Findings from Seven Years of Field Performance Data for Automated Demand Response in Commercial Buildings

California is a leader in automating demand response (DR) to promote low-cost, consistent, and predictable electric grid management tools. Over 250 commercial and industrial facilities in California participate in fully-automated programs providing over 60 MW of peak DR savings. This paper presents a summary of Open Automated DR (OpenADR) implementation by each of the investor-owned utilities in California. It provides a summary of participation, DR strategies and incentives. Commercial buildings can reduce peak demand from 5 to 15percent with an average of 13percent. Industrial facilities shed much higher loads. For buildings with multi-year savings we evaluate their load variability and shed variability. We provide a summary of control strategies deployed, along with costs to install automation. We report on how the electric DR control strategies perform over many years of events. We benchmark the peak demand of this sample of buildings against their past baselines to understand the differences in building performance over the years. This is done with peak demand intensities and load factors. The paper also describes the importance of these data in helping to understand possible techniques to reach net zero energy using peak day dynamic control capabilities in commercial buildings. We present an example in which …
Date: May 14, 2010
Creator: Kiliccote, Sila; Piette, Mary Ann; Mathieu, Johanna & Parrish, Kristen
System: The UNT Digital Library