Resource Type

Month

5 Matching Results

Results open in a new window/tab.

Probing the hydrogen-bond network of water via time-resolved soft x-ray spectroscopy (open access)

Probing the hydrogen-bond network of water via time-resolved soft x-ray spectroscopy

We report time-resolved studies of hydrogen bonding in liquid H2O, in response to direct excitation of the O-H stretch mode at 3 mu m, probed via soft x-ray absorption spectroscopy at the oxygen K-edge. This approach employs a newly developed nanofluidic cell for transient soft x-ray spectroscopy in liquid phase. Distinct changes in the near-edge spectral region (XANES) are observed, and are indicative of a transient temperature rise of 10K following transient laser excitation and rapid thermalization of vibrational energy. The rapid heating occurs at constant volume and the associated increase in internal pressure, estimated to be 8MPa, is manifest by distinct spectral changes that differ from those induced by temperature alone. We conclude that the near-edge spectral shape of the oxygen K-edge is a sensitive probe of internal pressure, opening new possibilities for testing the validity of water models and providing new insight into the nature of hydrogen bonding in water.
Date: April 24, 2009
Creator: Huse, Nils; Wen, Haidan; Nordlund, Dennis; Szilagyi, Erzsi; Daranciang, Dan; Miller, Timothy A. et al.
System: The UNT Digital Library
Fast Pulsing Neutron Generators for Security Application (open access)

Fast Pulsing Neutron Generators for Security Application

Active neutron interrogation has been demonstrated to be an effective method of detecting shielded fissile material. A fast fall-time/fast pulsing neutron generator is needed primarily for differential die-away technique (DDA) interrogation systems. A compact neutron generator, currently being developed in Lawrence Berkeley National Laboratory, employs an array of 0.6-mm-dia apertures (instead of one 6-mm-dia aperture) such that gating the beamlets can be done with low voltage and a small gap to achieve sub-microsecond ion beam fall time and low background neutrons. Arrays of 16 apertures (4x4) and 100 apertures (10x10) have been designed and fabricated for a beam extraction experiment. The preliminary results showed that, using a gating voltage of 1200 V and a gap distance of 1 mm, the fall time of extracted ion beam pulses is approximately 0.15 mu s at beam energies of 1000 eV.
Date: April 24, 2009
Creator: Ji, Q.; Regis, M. & Kwan, J. W.
System: The UNT Digital Library
Restructuring of hex-Pt(100) under CO gas environments: formation of 2-D nanoclusters (open access)

Restructuring of hex-Pt(100) under CO gas environments: formation of 2-D nanoclusters

The atomic-scale restructuring of hex-Pt(100) induced by carbon monoxide with a wide pressure range was studied with a newly designed chamber-in-chamber high-pressure STM and theoretical calculations. Both experimental and DFT calculation results show that CO molecules are bound to Pt nanoclusters through a tilted on-top configuration with a separation of {approx}3.7-4.1 {angstrom}. The phenomenon of restructuring of metal catalyst surfaces induced by adsorption, and in particular the formation of small metallic clusters suggests the importance of studying structures of catalyst surfaces under high pressure conditions for understanding catalytic mechanisms.
Date: April 24, 2009
Creator: Tao, Feng; Dag, Sefa; Wang, Lin-Wang; Liu, Zhi; Butcher, Derek; Salmeron, Miquel et al.
System: The UNT Digital Library
High quality ZnO:Al transparent conducting oxide films synthesized by pulsed filtered cathodic arc deposition (open access)

High quality ZnO:Al transparent conducting oxide films synthesized by pulsed filtered cathodic arc deposition

Aluminum-doped zinc oxide, ZnO:Al or AZO, is a well-known n-type transparent conducting oxide with great potential in a number of applications currently dominated by indium tin oxide (ITO). In this study, the optical and electrical properties of AZO thin films deposited on glass and silicon by pulsed filtered cathodic arc deposition are systematically studied. In contrast to magnetron sputtering, this technique does not produce energetic negative ions, and therefore ion damage can be minimized. The quality of the AZO films strongly depends on the growth temperature while only marginal improvements are obtained with post-deposition annealing. The best films, grown at a temperature of about 200?C, have resistivities in the low to mid 10-4 Omega cm range with a transmittance better than 85percent in the visible part of the spectrum. It is remarkable that relatively good films of small thickness (60 nm) can be fabricated using this method.
Date: April 24, 2009
Creator: Anders, Andre; Lim, Sunnie H.N.; Yu, Kin Man; Andersson, Joakim; Rosen, Johanna; McFarland, Mike et al.
System: The UNT Digital Library
Quantitative assessment of electrostatic embedding in Density Functional Theory calculations of biomolecular systems (open access)

Quantitative assessment of electrostatic embedding in Density Functional Theory calculations of biomolecular systems

We evaluate the accuracy of density functional theory quantum calculations of biomolecular subsystems using a simple electrostatic embedding scheme. Our scheme is based on dividing the system of interest into a primary and secondary subsystem. A finite difference discretization of the Kohn-Sham equations is used for the primary subsystem, while its electrostatic environment is modeled with a simple one-electron potential. Force-field atomic partial charges are used to generate smeared Gaussian charge densities and to model the secondary subsystem. We illustrate the utility of this approach with calculations of truncated dipeptide chains. We analyze quantitatively the accuracy of this approach by calculating atomic forces and comparing results with fullQMcalculations. The impact of the choice made in terminating dangling bonds at the frontier of the QM region is also investigated.
Date: April 24, 2009
Creator: Fattebert, J.; Law, R. J.; Bennion, B.; Lau, E. Y.; Schwegler, E. & Lightstone, F. C.
System: The UNT Digital Library