110 Matching Results

Results open in a new window/tab.

Fluctuation-Dissipation Theorem for Event-Dominated Processes (open access)

Fluctuation-Dissipation Theorem for Event-Dominated Processes

Article discussing the fluctuation-dissipation theorem for event-dominated processes.
Date: July 6, 2007
Creator: Allegrini, Paolo; Bologna, Mauro; Grigolini, Paolo & West, Bruce J.
System: The UNT Digital Library
An Update on the Status of the NIF Power Conditioning System (open access)

An Update on the Status of the NIF Power Conditioning System

The National Ignition Facility (NIF) Power Conditioning System provides the pulsed excitation required to drive flashlamps in the laser's optical amplifiers. Modular in design, each of the 192 Main Energy Storage Modules (MESMs) stores up to 2.2 MJ of electrical energy in its capacitor bank before delivering the energy to 20 pairs of flashlamps in a 400 {micro}s pulse (10% power points). The peak current of each MESM discharge is 0.5 MA. Production, installation, commissioning and operation of the NIF Power Conditioning continue to progress rapidly, with the goals of completing accelerated production and commissioning by early 2008, while maintaining an aggressive operation schedule. To date, more than 97% of the required modules have been assembled, shipped and installed in the facility, representing more that 380 MJ of stored energy available for driving NIF flashlamps. The MESMs have displayed outstanding reliability during daily, multiple-shift operations.
Date: September 6, 2007
Creator: Arnold, P. A.; Hulsey, S.; Ullery, G. T.; Petersen, D. E.; Pendleton, D. L.; Ollis, C. W. et al.
System: The UNT Digital Library
Open Cavity Solutions to the Rf in Magnetic Field Problem. (open access)

Open Cavity Solutions to the Rf in Magnetic Field Problem.

It has been observed [1] that breakdown in an 805 MHz pill-box cavity occurs at much lower gradients as an external axial magnetic field is increased. This effect was not observed with on open iris cavity. It is proposed that this effect depends on the relative angles of the magnetic and maximum electric fields: parallel in the pill-box case; at an angle in the open iris case. If so, using an open iris structure with solenoid coils in the irises should perform even better. A lattice, using this principle, is presented, for use in 6D cooling for a Muon Collider. Experimental layouts to test this principle are proposed.
Date: August 6, 2007
Creator: Palmer, R. B.; Berg, J. S.; Fernow, R. C.; Gallardo, J. C. & Kirk, H. G.
System: The UNT Digital Library
Using Ffags in the Creation of Neutrino Beams. (open access)

Using Ffags in the Creation of Neutrino Beams.

A number of accelerator-based facilities have been proposed for the creation of neutrino beams: superbeams, neutrino factories, and beta beams. Fixed field alternating gradient accelerators (FFAGs) have potential uses in all of these facilities. Superbeams and neutrino factories require high power proton drivers for the production of pions; FFAGs can beneficial for accelerating protons for those machines. FFAGs can reduce the cost of accelerating muons in a neutrino factory because they enable the muons to make many passes through the RF cavities and still accelerate rapidly. FFAGs have potential uses in production of radioactive ions for a beta beam facility, since radioactive ions that decay into high energy neutrinos in their rest frame may potentially be produced in a ring, and the large energy acceptance of an FFAG may be useful for maximizing beam lifetime in such a ring. Finally, FFAGs have been contemplated for use in ionization cooling rings for neutrino factories, since the equilibrium distribution in ionization cooling has a large energy spread for which an FFAG's large energy acceptance is needed, and FFAGs may make it feasible to inject and extract from such a ring.
Date: August 6, 2007
Creator: Berg, J. S.
System: The UNT Digital Library
Monte Carlo Methods in the Physical Sciences (open access)

Monte Carlo Methods in the Physical Sciences

I will review the role that Monte Carlo methods play in the physical sciences. They are very widely used for a number of reasons: they permit the rapid and faithful transformation of a natural or model stochastic process into a computer code. They are powerful numerical methods for treating the many-dimensional problems that derive from important physical systems. Finally, many of the methods naturally permit the use of modern parallel computers in efficient ways. In the presentation, I will emphasize four aspects of the computations: whether or not the computation derives from a natural or model stochastic process; whether the system under study is highly idealized or realistic; whether the Monte Carlo methodology is straightforward or mathematically sophisticated; and finally, the scientific role of the computation.
Date: June 6, 2007
Creator: Kalos, M. H.
System: The UNT Digital Library
D-dualized D-brane (open access)

D-dualized D-brane

We further investigate the dimensional duality (D-duality) proposed in arXiv: 0705.0550 by mainly focusing on the properties of D-branes in this background. We derive the world-sheet correspondence of static D-branes, and discuss the fate of non-static D-branes from the world-sheet viewpoint. The quantum string production with or without D-branes is also studied fromthe time-like Liouville theory. We find that the closed string production from the background is much larger than that from D-branes decaying into nothing.
Date: June 6, 2007
Creator: Nakayama, Yu & Nakayama, Yu
System: The UNT Digital Library
The US Long Baseline Neutrino Experiment Study (open access)

The US Long Baseline Neutrino Experiment Study

The US Long Baseline Neutrino Experiment Study was commissioned jointly by Brookhaven National Laboratory (BNL)and Fermi National Accelerator Laboratory (FNAL) to investigate the potential for future U.S. based long baseline neutrino oscillation experiments using MW class conventional neutrino beams that can be produced at FNAL. The experimental baselines are based on two possible detector locations: (1) off-axis to the existing FNAL NuMI beamline at baselines of 700 to 810 km and (2) NSF's proposed future Deep Underground Science and Engineering Laboratory (DUSEL) at baselines greater than 1000km. Two detector technologies are considered: a megaton class Water Cherenkov detector deployed deep underground at a DUSEL site, or a 100kT Liquid Argon Time-Projection Chamber (TPC) deployed on the surface at any of the proposed sites. The physics sensitivities of the proposed experiments are summarized. We find that conventional horn focused wide-band neutrino beam options from FNAL aimed at a massive detector with a baseline of > 1000km have the best sensitivity to CP violation and the neutrino mass hierarchy for values of the mixing angle {theta}{sub 13} down to 2{sup o}.
Date: August 6, 2007
Creator: Bishai, M.
System: The UNT Digital Library
Discovery of Non-random Spatial Distribution of Impacts in the Stardust Cometary Collector (open access)

Discovery of Non-random Spatial Distribution of Impacts in the Stardust Cometary Collector

We report the discovery that impacts in the Stardust cometary collector are not distributed randomly in the collecting media, but appear to be clustered on scales smaller than {approx} 10 cm. We also report the discovery of at least two populations of oblique tracks. We evaluated several hypotheses that could explain the observations. No hypothesis was consistent with all the observations, but the preponderance of evidence points toward at least one impact on the central Whipple shield of the spacecraft as the origin of both clustering and low-angle oblique tracks. High-angle oblique tracks unambiguously originate from a non-cometary impact on the spacecraft bus just forward of the collector.
Date: April 6, 2007
Creator: Westphal, A. J.; Bastien, R. K.; Borg, J.; Bridges, J.; Brownlee, D. E.; Burchell, M. J. et al.
System: The UNT Digital Library
Isopiestic Investigation of the Osmotic and Activity Coefficients of {yMgCl2 + (1 - y)MgSO4}(aq) and the Osmotic Coefficients of Na2SO4.MgSO4(aq) at 298.15 K (open access)

Isopiestic Investigation of the Osmotic and Activity Coefficients of {yMgCl2 + (1 - y)MgSO4}(aq) and the Osmotic Coefficients of Na2SO4.MgSO4(aq) at 298.15 K

Isopiestic vapor pressure measurements were made for {l_brace}yMgCl{sub 2} + (1-y)MgSO{sub 4}{r_brace}(aq) solutions with MgCl{sub 2} ionic strength fractions of y = 0, 0.1997, 0.3989, 0.5992, 0.8008, and (1) at the temperature 298.15 K, using KCl(aq) as the reference standard. These measurements for the mixtures cover the ionic strength range I = 0.9794 to 9.4318 mol {center_dot} kg{sup -1}. In addition, isopiestic measurements were made with NaCl(aq) as reference standard for mixtures of {l_brace}xNa{sub 2}SO{sub 4} + (1-x)MgSO{sub 4}{r_brace}(aq) with the molality fraction x = 0.50000 that correspond to solutions of the evaporite mineral bloedite (astrakanite), Na{sub 2}Mg(SO{sub 4}){sub 2} {center_dot} 4H{sub 2}O(cr). The total molalities, m{sub T} = m(Na{sub 2}SO{sub 4}) + m(MgSO{sub 4}), range from m{sub T} = 1.4479 to 4.4312 mol {center_dot} kg{sup -1} (I = 5.0677 to 15.509 mol {center_dot} kg{sup -1}), where the uppermost concentration is the highest oversaturation molality that could be achieved by isothermal evaporation of the solvent at 298.15 K. The parameters of an extended ion-interaction (Pitzer) model for MgCl2(aq) at 298.15 K, which were required for an analysis of the {l_brace}yMgCl{sub 2} + (1-y)MgSO{sub 4}{r_brace}(aq) mixture results, were evaluated up to I = 12.025 mol {center_dot} kg{sup -1} from published isopiestic …
Date: June 6, 2007
Creator: Miladinovic, J; Ninkovic, R; Todorovic, M & Rard, J A
System: The UNT Digital Library
Visualization of Scalar Adaptive Mesh Refinement Data (open access)

Visualization of Scalar Adaptive Mesh Refinement Data

Adaptive Mesh Refinement (AMR) is a highly effective computation method for simulations that span a large range of spatiotemporal scales, such as astrophysical simulations, which must accommodate ranges from interstellar to sub-planetary. Most mainstream visualization tools still lack support for AMR grids as a first class data type and AMR code teams use custom built applications for AMR visualization. The Department of Energy's (DOE's) Science Discovery through Advanced Computing (SciDAC) Visualization and Analytics Center for Enabling Technologies (VACET) is currently working on extending VisIt, which is an open source visualization tool that accommodates AMR as a first-class data type. These efforts will bridge the gap between general-purpose visualization applications and highly specialized AMR visual analysis applications. Here, we give an overview of the state of the art in AMR scalar data visualization research.
Date: December 6, 2007
Creator: VACET; Weber, Gunther; Weber, Gunther H.; Beckner, Vince E.; Childs, Hank; Ligocki, Terry J. et al.
System: The UNT Digital Library
Resolution of a High Performance Cavity Beam Position Monitor System (open access)

Resolution of a High Performance Cavity Beam Position Monitor System

None
Date: July 6, 2007
Creator: Walston, S.; Chung, C.; Fitsos, P.; Gronberg, J.; Ross, M.; Khainovski, O. et al.
System: The UNT Digital Library
Regional Analysis of Lg Attenuation: Comparison of 1D Methods in Northern California and Application to the Yellow Sea / Korean Peninsula (open access)

Regional Analysis of Lg Attenuation: Comparison of 1D Methods in Northern California and Application to the Yellow Sea / Korean Peninsula

The measurement of regional attenuation Q{sup -1} can produce method dependent results. The discrepancies among methods are due to differing parameterizations (e.g., geometrical spreading rates), employed datasets (e.g., choice of path lengths and sources), and methodologies themselves (e.g., measurement in the frequency or time domain). We apply the coda normalization (CN), two-station (TS), reverse two-station (RTS), source-pair/receiver-pair (SPRP), and the new coda-source normalization (CS) methods to measure Q of the regional phase, Lg (Q{sub Lg}), and its power-law dependence on frequency of the form Q{sub 0}f{sup {eta}} with controlled parameterization in the well-studied region of northern California using a high-quality dataset from the Berkeley Digital Seismic Network. We test the sensitivity of each method to changes in geometrical spreading, Lg frequency bandwidth, the distance range of data, and the Lg measurement window. For a given method, there are significant differences in the power-law parameters, Q{sub 0} and {eta}, due to perturbations in the parameterization when evaluated using a conservative pairwise comparison. The CN method is affected most by changes in the distance range, which is most probably due to its fixed coda measurement window. Since, the CS method is best used to calculate the total path attenuation, it is very …
Date: July 6, 2007
Creator: Ford, S R; Dreger, D S; Mayeda, K M; Walter, W R; Malagnini, L & Phillips, W S
System: The UNT Digital Library
More visible effects of the hidden sector (open access)

More visible effects of the hidden sector

There is a growing appreciation that hidden sector dynamics may affect the supersymmetry breaking parameters in the visible sector (supersymmetric standard model), especially when the dynamics is strong and superconformal. We point out that there are effects that have not been previously discussed in the literature. For example, the gaugino masses are suppressed relative to the gravitino mass. We discuss their implications in the context of various mediation mechanisms. The issues discussed include anomaly mediation with singlets, the mu (B mu) problem in gauge and gaugino mediation, and distinct mass spectra for the superparticles that have not been previously considered.
Date: September 6, 2007
Creator: Murayama, Hitoshi; Murayama, Hitoshi; Nomura, Yasunori & Poland, David
System: The UNT Digital Library
R AND D TOPICS FOR NEUTRINO FACTORY ACCELERATION. (open access)

R AND D TOPICS FOR NEUTRINO FACTORY ACCELERATION.

The muons in a neutrino factory must be accelerated from the energy of the capture, phase rotation, and cooling systems (around 120 MeV kinetic energy) to the energy of the storage ring (around 25 GeV). This is done with a sequence of accelerators of different types: a linac, one or more recirculating linear accelerators, and finally one or more fixed field alternating gradient accelerators (FFAGs). I discuss the R&D that is needed to arrive at a complete system which we can have confidence will accelerate the beam and for which we can obtain a cost estimate.
Date: August 6, 2007
Creator: SCOTT,J.S.
System: The UNT Digital Library
Image Ellipticity from Atmospheric Aberrations (open access)

Image Ellipticity from Atmospheric Aberrations

We investigate the ellipticity of the point-spread function (PSF) produced by imaging an unresolved source with a telescope, subject to the effects of atmospheric turbulence. It is important to quantify these effects in order to understand the errors in shape measurements of astronomical objects, such as those used to study weak gravitational lensing of field galaxies. The PSF modeling involves either a Fourier transform of the phase information in the pupil plane or a ray-tracing approach, which has the advantage of requiring fewer computations than the Fourier transform. Using a standard method, involving the Gaussian weighted second moments of intensity, we then calculate the ellipticity of the PSF patterns. We find significant ellipticity for the instantaneous patterns (up to more than 10%). Longer exposures, which we approximate by combining multiple (N) images from uncorrelated atmospheric realizations, yield progressively lower ellipticity (as 1/{radical}N). We also verify that the measured ellipticity does not depend on the sampling interval in the pupil plane using the Fourier method. However, we find that the results using the ray-tracing technique do depend on the pupil sampling interval, representing a gradual breakdown of the geometric approximation at high spatial frequencies. Therefore, ray tracing is generally not an …
Date: March 6, 2007
Creator: de Vries, W. H.; Olivier, S. S.; Asztalos, S. J.; Rosenberg, L. J. & Baker, K. L.
System: The UNT Digital Library
Identifying Isotropic Events Using an Improved Regional Moment Tensor Inversion Technique (open access)

Identifying Isotropic Events Using an Improved Regional Moment Tensor Inversion Technique

Using a regional time-domain waveform inversion for the complete moment tensor we calculate the deviatoric and isotropic source components for several explosions at the Nevada Test Site as well as earthquakes, and collapses in the surrounding region of the western US. The events separate into specific populations according to their deviation from a pure double-couple and ratio of isotropic to deviatoric energy. The separation allows for anomalous event identification and discrimination between explosions, earthquakes, and collapses. Error in the moment tensor solutions and source parameters is also calculated. We investigate the sensitivity of the moment tensor solutions to Green's functions calculated with imperfect Earth models, inaccurate event locations, and data with a low signal-to-noise ratio. We also test the performance of the method under a range of recording conditions from excellent azimuthal coverage to cases of sparse station availability, as might be expected for smaller events. Finally, we assess the depth and frequency dependence upon event size. This analysis will be used to determine the range where well-constrained solutions can be obtained.
Date: July 6, 2007
Creator: Ford, S R; Dreger, D S & Walter, W R
System: The UNT Digital Library
The Emma Lattice. (open access)

The Emma Lattice.

EMMA is a 10 to 20MeV electron ring designed to test our understanding of beam dynamics in a relativistic linear non-scaling fixed field alternating gradient accelerator (FFAG). I will give a basic review of the EMMA lattice parameters. Then I will review the different lattice configurations that we would like to have for EMMA. Finally, I will briefly discuss the process of commissioning each lattice configuration.
Date: August 6, 2007
Creator: Berg, J. S.
System: The UNT Digital Library
Volume Independence in Large Nc QCD-like Gauge Theories (open access)

Volume Independence in Large Nc QCD-like Gauge Theories

Volume independence in large N{sub c} gauge theories may be viewed as a generalized orbifold equivalence. The reduction to zero volume (or Eguchi-Kawai reduction) is a special case of this equivalence. So is temperature independence in confining phases. A natural generalization concerns volume independence in ''theory space'' of quiver gauge theories. In pure Yang-Mills theory, the failure of volume independence for sufficiently small volumes (at weak coupling) due to spontaneous breaking of center symmetry, together with its validity above a critical size, nicely illustrate the symmetry realization conditions which are both necessary and sufficient for large N{sub c} orbifold equivalence. The existence of a minimal size below which volume independence fails also applies to Yang-Mills theory with antisymmetric representation fermions [QCD(AS)]. However, in Yang-Mills theory with adjoint representation fermions [QCD(Adj)], endowed with periodic boundary conditions, volume independence remains valid down to arbitrarily small size. In sufficiently large volumes, QCD(Adj) and QCD(AS) have a large N{sub c} ''orientifold'' equivalence, provided charge conjugation symmetry is unbroken in the latter theory. Therefore, via a combined orbifold-orientifold mapping, a well-defined large N{sub c} equivalence exists between QCD(AS) in large, or infinite, volume and QCD(Adj) in arbitrarily small volume. Since asymptotically free gauge theories, such …
Date: February 6, 2007
Creator: Kovtun, Pavel; Unsal, Mithat & Yaffe, Laurence G.
System: The UNT Digital Library
Ionization-Induced Electron Trapping in Ultrarelativistic Plasma Wakes (open access)

Ionization-Induced Electron Trapping in Ultrarelativistic Plasma Wakes

The onset of trapping of electrons born inside a highly relativistic, 3D beam-driven plasma wake is investigated. Trapping occurs in the transition regions of a Li plasma confined by He gas. Li plasma electrons support the wake, and higher ionization potential He atoms are ionized as the beam is focused by Li ions and can be trapped. As the wake amplitude is increased, the onset of trapping is observed. Some electrons gain up to 7.6 GeV in a 30.5 cm plasma. The experimentally inferred trapping threshold is at a wake amplitude of 36 GV/m, in good agreement with an analytical model and PIC simulations.
Date: April 6, 2007
Creator: Oz, E.; Deng, S.; Katsouleas, T.; Muggli, P.; Barnes, C. D.; Blumenfeld, I. et al.
System: The UNT Digital Library
RADRELAY RADIOLOGICAL DATA LINK DEVICE (open access)

RADRELAY RADIOLOGICAL DATA LINK DEVICE

The RadRelay effort developed small, field appropriate, portable prototype devices that allow radiological spectra to be downloaded from field radiological detectors, like the identiFINDER-U, and transmitted to land based experts. This communications capability was designed for the U. S. Coast Guard (USCG) but is also applicable to the Customs and Border Protection (CBP) personnel working in remote locations. USCG Level II personnel currently use the identiFINDER-U Hand-Held Radioisotope ID Devices (HHRIID) to detect radiological materials during specific boarding operations. These devices will detect not only radiological emissions but will also evaluate those emissions against a table of known radiological spectra. The RadRelay has been developed to significantly improve the functionality of HHRIID, by providing the capability to download radiological spectra and then transmit them using satellite or cell phone technology. This remote wireless data transfer reduces the current lengthy delay often encountered between the shipboard detection of unknown radiological material and the evaluation of that data by technical and command personnel. That delay is reduced from hours to minutes and allows the field located personnel to remain on station during the inspection and evaluation process.
Date: November 6, 2007
Creator: Harpring, L & Frank Heckendorn, F
System: The UNT Digital Library
An atomic force microcopy study of the mechanical and electricalproperties of monolayer films of molecules with aromatic end groups (open access)

An atomic force microcopy study of the mechanical and electricalproperties of monolayer films of molecules with aromatic end groups

The effect of intermolecular {pi}-{pi} stacking on the electrical and mechanical properties of monolayer films molecules containing aromatic groups was studied using atomic force microscopy. Two types of aromatic molecules, (4-mercaptophenyl) anthrylacetylene (MPAA) and (4-mercaptophenyl)-phenylacetylene (MPPA) were used as model systems with different {pi}-{pi} stacking strength. Monolayer films of these molecules on Au(111) surfaces exhibited conductivities differing by more than one order of magnitude, MPAA being the most conductive and MPPA the least conductive. The response to compressive loads by the AFM tip was also found to be very different for both molecules. In MPAA films distinct molecular conductivity changes are observed upon mechanical perturbation. This effect however was not observed on the MPPA film, where intermolecular {pi}-{pi} interactions are likely weaker.
Date: September 6, 2007
Creator: Fang, Liang; Park, J.Y.; Ma, H.; Jen, A.K.-Y. & Salmeron, M.
System: The UNT Digital Library
Geometric metastability, quivers and holography (open access)

Geometric metastability, quivers and holography

We use large N duality to study brane/anti-brane configurations on a class of Calabi-Yau manifolds. With only branes present, the Calabi-Yau manifolds in question give rise to N=2 ADE quiver theories deformed by superpotential terms. We show that the large N duality conjecture of hep-th/0610249 reproduces correctly the known qualitative features of the brane/anti-brane physics. In the supersymmetric case, the gauge theories have Seiberg dualities which are represented as flops in the geometry. Moreover, the holographic dual geometry encodes the whole RG flow of the gauge theory. In the non-supersymmetric case, the large N duality predicts that the brane/anti-brane theories also enjoy such dualities, and allows one to pick out the good description at a given energy scale.
Date: September 6, 2007
Creator: Aganagic, Mina; Aganagic, Mina; Beem, Christopher & Freivogel, Ben
System: The UNT Digital Library
Application of exterior complex scaling to positron-hydrogencollisions including rearrangement (open access)

Application of exterior complex scaling to positron-hydrogencollisions including rearrangement

The first application of an exterior complex scaling method to an atomic scattering problem with distinct rearrangement channels is reported. Calculations are performed for positron-hydrogen collisions in an s-wave model employing an electron-positron potential of V{sub 12} = -(8+(r{sub 1}-r{sub 2}){sup 2}){sup 1/2}, using the time-independent propagating exterior complex scaling (PECS) method. This potential has the correct long-range Coulomb tail of the full problem and the results demonstrate that ECS-based methods can accurately calculate scattering, ionization and positronium formation cross sections in this three-body rearrangement collision.
Date: December 6, 2007
Creator: Bartlett, Philip L.; Stelbovics, Andris T.; Rescigno, Thomas N. & McCurdy, C. William
System: The UNT Digital Library
A High Resolution Hydrometer Phase Classifier Based on Analysis of Cloud Radar Doppler Spectra. (open access)

A High Resolution Hydrometer Phase Classifier Based on Analysis of Cloud Radar Doppler Spectra.

The lifecycle and radiative properties of clouds are highly sensitive to the phase of their hydrometeors (i.e., liquid or ice). Knowledge of cloud phase is essential for specifying the optical properties of clouds, or else, large errors can be introduced in the calculation of the cloud radiative fluxes. Current parameterizations of cloud water partition in liquid and ice based on temperature are characterized by large uncertainty (Curry et al., 1996; Hobbs and Rangno, 1998; Intriery et al., 2002). This is particularly important in high geographical latitudes and temperature ranges where both liquid droplets and ice crystal phases can exist (mixed-phase cloud). The mixture of phases has a large effect on cloud radiative properties, and the parameterization of mixed-phase clouds has a large impact on climate simulations (e.g., Gregory and Morris, 1996). Furthermore, the presence of both ice and liquid affects the macroscopic properties of clouds, including their propensity to precipitate. Despite their importance, mixed-phase clouds are severely understudied compared to the arguably simpler single-phase clouds. In-situ measurements in mixed-phase clouds are hindered due to aircraft icing, difficulties distinguishing hydrometeor phase, and discrepancies in methods for deriving physical quantities (Wendisch et al. 1996, Lawson et al. 2001). Satellite-based retrievals of cloud …
Date: August 6, 2007
Creator: Luke,E. & Kollias, P.
System: The UNT Digital Library