62 Matching Results

Results open in a new window/tab.

Recent Developments in Neutrino Science: A Whole Lot About Almost Nothing (open access)

Recent Developments in Neutrino Science: A Whole Lot About Almost Nothing

Results from Super-K, SNO, and KamLAND provide strong evidence that neutrinos undergo flavor-changing oscillations and therefore have non-zero mass. The {nu}-disappearance observations by KamLAND, assuming CPT conservation, point to matter enhanced (MSW) oscillations with large mixing angles as the solution to the solar neutrino problem--a result consistent with the MSW parameters recently defined by these experiments. This requires that the observed neutrino flavors (e, {mu}, and tau) are not mass eigenstates, but are linear combinations of the mass eigenstates of the neutrino. However, such oscillation experiments can only determine the differences in the masses of the neutrinos, not the absolute scale of neutrino mass. What can be inferred from these experiments is that at least one species of neutrino has a mass greater than 55 meV. In fact, the WMAP observations of large-scale structure point to a sum-neutrino mass of {approx} 0.7 eV (roughly 0.25 eV/species assuming democracy between the flavors). Furthermore, there is still the important issue of whether the neutrino and anti-neutrino are distinct particles (i.e. Dirac type) or not (Majorana type). The only way to answer both of these questions is through neutrinoless double beta decay (DBD) experiments. CUORE (Cryogenic Underground Observatory for Rare Events) is a …
Date: August 22, 2005
Creator: Norman, E B
System: The UNT Digital Library
Modeling Growth of Au-Cu Nanocrystalliine Coatings (open access)

Modeling Growth of Au-Cu Nanocrystalliine Coatings

The electrodeposition process parameters of current density, pulse duration, and cell potential affect both the structure and composition of the foils. The mechanism for nucleation and growth as determined from current transients yield relationships for nucleus density and nucleation rate. To develop an understanding of the role of the process parameters on grain size--as a design structural parameter to control strength, for example, a formulation is presented to model the affects of the deposition energetics on grain size and morphology. An activation energy for the deposition process is modeled that reveals different growth mechanisms, wherein nucleation and diffusion effects are each dominant as dependent upon pulse duration. A diffusion coefficient common for each of the pulsed growth modes demarcates an observed transition in growth from smooth to rough surfaces. Empirical relationships are developed that relate the parameters of the deposition process to the morphology and grain size at the nanoscale. Regimes for nanocrystalline growth include a short and long pulse mode, each with distinct activation energies. The long pulse has the additional contribution of bulk-like diffusion whereas the short pulse is limited to surface diffusion and nucleation. For either pulse condition, a transition from a rough (or nodular) growth to …
Date: September 22, 2005
Creator: Jankowski, Alan Frederic
System: The UNT Digital Library
Silicon-Germanium Films Deposited by Low Frequency PE CVD: Effect of H2 and Ar Dilution (open access)

Silicon-Germanium Films Deposited by Low Frequency PE CVD: Effect of H2 and Ar Dilution

We have studied structure and electrical properties of Si{sub 1-Y}Ge{sub Y}:H films deposited by low frequency PE CVD over the entire composition range from Y=0 to Y=1. The deposition rate of the films and their structural and electrical properties were measured for various ratios of the germane/silane feed gases and with and without dilution by Ar and by H{sub 2}. Structure and composition was studied by Auger electron spectroscopy (AES), secondary ion mass spectroscopy (SIMS) and Fourier transform infrared (FTIR) spectroscopy. Surface morphology was characterized by atomic force microscopy (AFM). We found: (1) The deposition rate increased with Y maximizing at Y=1 without dilution. (2) The relative rate of Ge and Si incorporation is affected by dilution. (3) Hydrogen preferentially bonds to silicon. (4) Hydrogen content decreases for increasing Y. In addition, optical measurements showed that as Y goes for 0 to 1, the Fermi level moves from mid gap to the conduction band edge, i.e. the films become more n-type. No correlation was found between the pre-exponential and the activation energy of conductivity. The behavior of the conductivity {gamma}-factor suggests a local minimum in the density of states at E {approx} 0.33 eV for the films grown with or …
Date: September 22, 2005
Creator: Kosarev, A; Torres, A; Hernandez, Y; Ambrosio, R; Zuniga, C; Felter, T E et al.
System: The UNT Digital Library
Mu B-Driven Electroweak Symmetry Breaking (open access)

Mu B-Driven Electroweak Symmetry Breaking

None
Date: September 22, 2005
Creator: Nomura, Yasunori; Poland, David & Tweedie, Brock
System: The UNT Digital Library
Image Content Engine (ICE): A System for Fast Image Database Searches (open access)

Image Content Engine (ICE): A System for Fast Image Database Searches

The Image Content Engine (ICE) is being developed to provide cueing assistance to human image analysts faced with increasingly large and intractable amounts of image data. The ICE architecture includes user configurable feature extraction pipelines which produce intermediate feature vector and match surface files which can then be accessed by interactive relational queries. Application of the feature extraction algorithms to large collections of images may be extremely time consuming and is launched as a batch job on a Linux cluster. The query interface accesses only the intermediate files and returns candidate hits nearly instantaneously. Queries may be posed for individual objects or collections. The query interface prompts the user for feedback, and applies relevance feedback algorithms to revise the feature vector weighting and focus on relevant search results. Examples of feature extraction and both model-based and search-by-example queries are presented.
Date: March 22, 2005
Creator: Brase, J M; Paglieroni, D W; Weinert, G F; Grant, C W; Lopez, A S & Nikolaev, S
System: The UNT Digital Library
Heat Transfer from Condensate Droplets Falling through an Immiscible Layer of Tributyl Phosphate (open access)

Heat Transfer from Condensate Droplets Falling through an Immiscible Layer of Tributyl Phosphate

As part of a safety analysis of reactions in two-layer mixtures of nitric acid and tributyl phosphate (TBP), an experiment was conducted to study how steam condensate mixes with the TBP layer when steam passes over a TBP-nitric acid mixture. The experiments showed that the condensate does not form a separate layer on top of the TBP but instead percolates as droplets through the TBP layer. The temperature at the top surface of the TBP layer undergoes a step change increase when the initial condensate droplets reach the surface. Temperatures at the surface and within the TBP and aqueous layers subsequently approach a steady state distribution governed by laminar convection and radiation heat transfer from the vapor space above the two-layer mixture. The rate of temperature increase and the steady state temperature gradient are determined by a characteristic propagation velocity and a streamwise dispersion coefficient for heat transfer. The propagation velocity is the geometric mean of the thermal convection velocities for the organic and aqueous phases, and the dispersion coefficient equals 0.494 times the product of the superficial condensate droplet velocity and the diameter of the test vessel. The value of the dispersion coefficient agrees with the Joshi (1980) correlation …
Date: August 22, 2005
Creator: Laurinat, James E.
System: The UNT Digital Library
Target Selection and Deselection at the Berkeley StructuralGenomics Center (open access)

Target Selection and Deselection at the Berkeley StructuralGenomics Center

At the Berkeley Structural Genomics Center (BSGC), our goalis to obtain a near-complete structural complement of proteins in theminimal organisms Mycoplasma genitalium and M. pneumoniae, two closelyrelated pathogens. Current targets for structure determination have beenselected in six major stages, starting with those predicted to be mosttractable to high throughput study and likely to yield new structuralinformation. We report on the process used to select these proteins, aswell as our target deselection procedure. Target deselection reducesexperimental effort by eliminating targets similar to those recentlysolved by the structural biology community or other centers. We measurethe impact of the 69 structures solved at the BSGC as of July 2004 onstructure prediction coverage of the M. pneumoniae and M. genitaliumproteomes. The number of Mycoplasma proteins for which thefold couldfirst be reliably assigned based on structures solved at the BSGC (24 M.pneumoniae and 21 M. genitalium) is approximately 25 percent of the totalresulting from work at all structural genomics centers and the worldwidestructural biology community (94 M. pneumoniae and 86M. genitalium)during the same period. As the number of structures contributed by theBSGC during that period is less than 1 percent of the total worldwideoutput, the benefits of a focused target selection strategy are apparent.If the …
Date: March 22, 2005
Creator: Chandonia, John-Marc; Kim, Sung-Hou & Brenner, Steven E.
System: The UNT Digital Library
Implementing Information Security and Its Technology: A LineManagement Perspective (open access)

Implementing Information Security and Its Technology: A LineManagement Perspective

Assuring the security and privacy of institutionalinformation assets is a complex task for the line manager responsible forinternational and multi-national transactions. In the face of an unsureand often conflicting international legal framework, the line managermust employ all available tools in an Integrated Security and PrivacyManagement framework that ranges from legal obligations, to policy, toprocedure, to cutting edge technology to counter the rapidly evolvingcyber threat to information assets and the physical systems thatinformation systems control.
Date: August 22, 2005
Creator: Barletta, William A.
System: The UNT Digital Library
Material-dependent high-frequency current fluctuations of cathodicvacuum arcs: Evidence for the ecton cutoff of the fractal model (open access)

Material-dependent high-frequency current fluctuations of cathodicvacuum arcs: Evidence for the ecton cutoff of the fractal model

Current fluctuations of cathodic arcs were recorded withhigh analog bandwidth (up to 1 GHz) and fast digital sampling (up to 5Gsamples/sec). The power spectral density of the arc current wasdetermined by fast Fourier transform clearly showing material dependent,non-linear features in the frequency domain. These features can beassociated with the non-linear impedance of the conducting channelbetween cathode and anode, driven by the explosive nature of electronemission and plasma formation. The characteristic times of less than 100ns can be associated with individual explosive processes, "ectons," andtherefore represent the short-time physical cutoff for the fractal modelof cathodic arcs.
Date: December 22, 2005
Creator: Anders, Andre & Oks, Efim
System: The UNT Digital Library
Test Bed for Superconducting Materials (open access)

Test Bed for Superconducting Materials

Superconducting rf cavities are increasingly used in accelerators. Gradient is a parameter of particular importance for the ILC. Much progress in gradient has been made over the past decade, overcoming problems of multipacting, field emission, and breakdown triggered by surface impurities. However, the quenching limit of the surface magnetic field for niobium remains a hard limitation on cavity fields sustainable with this technology. Further exploration of materials and preparation may offer a path to surpassing the current limit. For this purpose, we have designed a resonant test cavity. One wall of the cavity is formed by a flat sample of superconducting material; the rest of the cavity is copper or niobium. The H field on the sample wall is 75% higher than on any other surface. Multipacting is avoided by use of a mode with no surface electric field. The cavity will be resonated through a coupling iris with high-power rf at superconducting temperature until the sample wall quenches, as detected by a change in the quality factor. This experiment will allow us to measure critical magnetic fields up to well above that of niobium with minimal cost and effort.
Date: June 22, 2005
Creator: Nantista, C.; Tantawi, S.; Weisend, J.; Siemann, R. & Dolgashev, V.
System: The UNT Digital Library
Design of a Standing-Wave Multi-Cavity Beam-Monitor for Simultaneous Beam Position and Emittance Measurements (open access)

Design of a Standing-Wave Multi-Cavity Beam-Monitor for Simultaneous Beam Position and Emittance Measurements

A high precision emittance measurement requires precise beam position at the measurement location. At present there is no existing technique, commercial or otherwise, for non-destructive pulse-to-pulse simultaneous beam position and emittance measurement. FARTECH, Inc. is currently developing a high precision cavity-based beam monitor for simultaneous beam position and emittance measurements pulse-to-pulse, without beam interception and without moving parts. The design and analysis of a multi-cavity standing wave structure for a pulse-to-pulse emittance measurement system in which the quadrupole and the dipole standing wave modes resonate at harmonics of the beam operating frequency is presented. Considering the Next Linear Collider beams, an optimized 9-cavity standing wave system is designed for simultaneous high precision beam position and emittance measurements. It operates with the {pi}-quadrupole mode resonating at 16th harmonic of the NLC bunch frequency, and the 3 {pi}/4 dipole mode at 12th harmonic (8.568 GHz). The 9-cavity system design indicates that the two dipoles resonate almost at the same frequency 8.583 GHz and the quadrupole at 11.427 GHz according to the scattering parameter calculations. The design can be trivially scaled so that the dipole frequency is at 8.568 GHz, and the quadrupole frequency can then be tuned during fabrication to achieve the …
Date: June 22, 2005
Creator: Kim, Jin-Soo; Miller, Roger & Nantista, Christpher
System: The UNT Digital Library
Linear and nonlinear Rayleigh-Taylor growth at strongly convergent spherical interfaces (open access)

Linear and nonlinear Rayleigh-Taylor growth at strongly convergent spherical interfaces

Recent attention has focused on the effect of spherical convergence on the nonlinear phase of Rayleigh-Taylor growth. For instability growth on spherically converging interfaces, modifications to the predictions of the Layzer model for the secular growth of a single, nonlinear mode have been reported [D. S. Clark and M. Tabak, Phys. Rev. E 72, 0056308 (2005).]. However, this model is limited in assuming a self-similar background implosion history as well as only addressing growth from a perturbation of already nonlinearly large amplitude. Additionally, only the case of single-mode growth was considered and not the multimode growth of interest in applications. Here, these deficiencies are remedied. First, the connection of the recent nonlinear results including convergence to the well-known results for the linear regime of growth is demonstrated. Second, the applicability of the model to more general implosion histories (i.e., not self-similar) is shown. Finally, to address the case of multimode growth with convergence, the recent nonlinear single mode results are combined with the Haan model formulation for weakly nonlinear multimode growth. Remarkably, convergence in the nonlinear regime is found not to modify substantially the multimode predictions of Haan's original model.
Date: December 22, 2005
Creator: Clark, D S & Tabak, M
System: The UNT Digital Library
A Systematic Regional Trend in Helium Isotopes Across the NorthernBasin and Range Province, Western North America (open access)

A Systematic Regional Trend in Helium Isotopes Across the NorthernBasin and Range Province, Western North America

An extensive study of helium isotopes in fluids collectedfrom surface springs, fumaroles and wells across the northern Basin andRange Province reveals a systematic trend of decreasing 3He/4He ratiosfrom west to east. The western margin of the Basin and Range ischaracterized by mantle-like ratios (6-8 Ra) associated with active orrecently active crustal magma systems (e.g. Coso, Long Valley, Steamboat,and the Cascade volcanic complex). Moving towards the east, the ratiosdecline systematically to a background value of ~;0.1 Ra. The regionaltrend is consistent with extensive mantle melting concentrated along thewestern margin and is coincident with an east-to-west increase in themagnitude of northwest strain. The increase in shear strain enhancescrustal permeability resulting in high vertical fluid flow rates thatpreserve the high helium isotope ratios at the surface. Superimposed onthe regional trend are "helium spikes", local anomalies in the heliumisotope composition. These "spikes" reflect either local zones of mantlemelting or locally enhanced crustal permeability. In the case of theDixie Valley hydrothermal system, it appears to be a combination ofboth.
Date: March 22, 2005
Creator: Kennedy, B. Mack & van Soest, Matthijs C.
System: The UNT Digital Library
Transmutation analysis of realistic low-activation steels for magnetic fusion reactors and IFMIF (open access)

Transmutation analysis of realistic low-activation steels for magnetic fusion reactors and IFMIF

A comprehensive transmutation study for steels considered in the selection of structural materials for magnetic and inertial fusion reactors has been performed in the IFMIF neutron irradiation scenario, as well as in the ITER and DEMO ones for comparison purposes. An element-by-element transmutation approach is used in the study, addressing the generation of: (1) H and He and (2) solid transmutants. The IEAF-2001 activation library and the activation code ACAB were applied to the IFMIF transmutation analysis, after proving the applicability of ACAB for transmutation calculations of this kind of intermediate energy systems.
Date: November 22, 2005
Creator: Cabellos, O; Sanz, J; Garc?a-Herranz, N; D?az, S; Reyes, S & Piedloup, S
System: The UNT Digital Library
Resolution of Transverse Electron Beam Measurements using Optical Transition Radiation (open access)

Resolution of Transverse Electron Beam Measurements using Optical Transition Radiation

In the plasma wakefield acceleration experiment E-167, optical transition radiation is used to measure the transverse profile of the electron bunches before and after the plasma acceleration. The distribution of the electric field from a single electron does not give a point-like distribution on the detector, but has a certain extension. Additionally, the resolution of the imaging system is affected by aberrations. The transverse profile of the bunch is thus convolved with a point spread function (PSF). Algorithms that deconvolve the image can help to improve the resolution. Imaged test patterns are used to determine the modulation transfer function of the lens. From this, the PSF can be reconstructed. The Lucy-Richardson algorithm is used to deconvolute this PSF from test images.
Date: June 22, 2005
Creator: Ischebeck, Rasmus; Decker, Franz-Josef; Hogan, Mark; Iverson, Richard H.; Krejcik, Patrick; Lincoln, Melissa et al.
System: The UNT Digital Library
Development of a 20-MeV Dielectric-Loaded Accelerator Test Facility (open access)

Development of a 20-MeV Dielectric-Loaded Accelerator Test Facility

This paper describes a joint project by the Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), to develop a dielectric-loaded accelerator (DLA) test facility powered by a high-power 11.424-GHz magnicon amplifier. The magnicon can presently produce 25 MW of output power in a 250-ns pulse at 10 Hz, and efforts are in progress to increase this to 50 MW. The facility will include a 5 MeV electron inector being developed by the Accelerator Laboratory of Tsinghua University in Beijing, China. The DLA test structures are being developed by ANL, and some have undergone testing at NRL at gradients up to {approx} 8 MV/m. SLAC is developing a means to combine the two magnicon output arms, and to drive an injector and accelerator with separate control of the power ratio and relative phase. RWBruce Associates, Inc., working with NRl, is developing a means to join short ceramic sections into a continuous accelerator tube by ceramic brazing using an intense millimeter-wave beam. The installation and testing of the first dielectric-loaded test accelerator, including injector, DLA structure, and spectrometer, should take place within the next year. The facility will be used for testing …
Date: June 22, 2005
Creator: Gold, S. H.; Kinkead, A. K.; Gai, W.; Power, J. G.; Konecny, R.; Jing, C. G. et al.
System: The UNT Digital Library
Separating Hazardous Aerosols from Ambient Aerosols: Role of Fluorescence-Spectral Determination, Aerodynamic Deflector and Pulse Aerodynamic Localizer (PAL) (open access)

Separating Hazardous Aerosols from Ambient Aerosols: Role of Fluorescence-Spectral Determination, Aerodynamic Deflector and Pulse Aerodynamic Localizer (PAL)

An aerosol deflection technique based on the single-shot UV-laser-induced fluorescence spectrum from a flowing particle is presented as a possible front-end bio-aerosol/hazardous-aerosol sensor/identifier. Cued by the fluorescence spectra, individual flowing bio-aerosol particles (1-10 {micro}m in diameter) have been successfully deflected from a stream of ambient aerosols. The electronics needed to compare the fluorescence spectrum of a particular particle with that of a pre-determined fluorescence spectrum are presented in some detail. The deflected particles, with and without going through a funnel for pulse aerodynamic localization (PAL), were collected onto a substrate for further analyses. To demonstrate how hazardous materials can be deflected, TbCl{sub 3} {center_dot} 6H{sub 2}O (a simulant material for some chemical forms of Uranium Oxide) aerosol particles (2 {micro}m in diameter) mixed with Arizona road dust was separated and deflected with our system.
Date: August 22, 2005
Creator: Pan, Yong-Le; Cobler, Patrick J.; Rhodes, Scott A.; Halverson, Justin & Chang, Richard K.
System: The UNT Digital Library
Operating Performance of the Low Group Delay Woofer Channel in PEP-II (open access)

Operating Performance of the Low Group Delay Woofer Channel in PEP-II

In PEP-II collider a dedicated low group-delay processing channel has been developed in order to provide high damping rates necessary to control the fast-growing longitudinal eigen modes driven by the fundamental impedances of the RF cavities. A description of the digital processing channel operating at 9.81 MHz and capable of supporting finite impulse response (FIR) controllers with up to 32 taps will be presented. A prototype system has been successfully commissioned in the High-Energy Ring (HER) in May 2004. Operating experiences with the prototype and the newly determined limits on achievable longitudinal damping will be discussed and illustrated with experimental data.
Date: June 22, 2005
Creator: Teytelman, D.; Van Winkle, D. & Fox, J.
System: The UNT Digital Library
Single-Bunch Tune and Beam Size Measurements Along Bunch Trains in PEP-II (open access)

Single-Bunch Tune and Beam Size Measurements Along Bunch Trains in PEP-II

By scanning gated cameras and gated tune monitors across the bunch pattern during normal colliding-bunch operation of PEP-II, the tunes and beam sizes of individual bunches were measured simultaneously in the high and low energy storage rings of PEP-II. The measurements were made with 1561 colliding bunches in PEP-II, arranged in trains of 66 bunches, with each bunch in the train separated by 4.2 ns. The tune and beam size measurements were correlated with the current, luminosity, and specific luminosity of the bunch. The results show a vertical tune shift at the start and end of the mini-trains, a luminosity droop along the mini-train, and specific luminosity drop in the first and last bunches of the train, since they experience a different parasitic crossing on either side of the interaction point (IP).
Date: June 22, 2005
Creator: Holtzapple, Robert; Dujmic, Denis & Fisher, Alan S.
System: The UNT Digital Library
Measurement of the B0 to D* D_s*+ and D_s+ to phi pi+ Branching Fractions (open access)

Measurement of the B0 to D* D_s*+ and D_s+ to phi pi+ Branching Fractions

The authors present measurements of the branching fractions {Beta}(B{sup 0} {yields} D*{sup -}D*{sub s}{sup +}) and {Beta}(D{sub s}{sup +} {yields} {phi}{pi}{sup +}), based on 123 x 10{sup 6} {Upsilon}(4S) {yields} B{bar B} decays collected by the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} B factory. A partial reconstruction technique is used to measure {Beta}(B{sup 0} {yields} D*{sup -}D*{sub s}{sup +}) and the decay chain is fully reconstructed to measure the branching fraction product {Beta}(B{sup 0} {yields} D*{sup -} D*{sub s}{sup +}) x {Beta}(D{sub s}{sup +} {yields} {phi}{pi}{sup +}). Comparing these two measurements provides a model-independent determination of the D{sub s}{sup +} {yields} {phi}{pi}{sup +} branching fraction. They obtain {Beta}(B{sup 0} {yields} D*{sup -}D*{sub s}{sup +}) = (1.88 {+-} 0.09 {+-} 0.17)% and {Beta}(D{sub s}{sup +} {yields} {phi}{pi}{sup +}) = (4.81 {+-} 0.52 {+-} 0.38)%, where the first uncertainties are statistical and the second systematic.
Date: June 22, 2005
Creator: Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J. P. et al.
System: The UNT Digital Library
Seismoelectric Phenomena in Fluid-Saturated Sediments (open access)

Seismoelectric Phenomena in Fluid-Saturated Sediments

Seismoelectric phenomena in sediments arise from acoustic wave-induced fluid motion in the pore space, which perturbs the electrostatic equilibrium of the electric double layer on the grain surfaces. Experimental techniques and the apparatus built to study this electrokinetic (EK) effect are described and outcomes for studies of seismoelectric phenomena in loose glass microspheres and medium-grain sand are presented. By varying the NaCl concentration in the pore fluid, we measured the conductivity dependence of two kinds of EK behavior: (1) the electric fields generated within the samples by the passage of transmitted acoustic waves, and (2) the electromagnetic wave produced at the fluid-sediment interface by the incident acoustic wave. Both phenomena are caused by relative fluid motion in the sediment pores--this feature is characteristic of poroelastic (Biot) media, but not predicted by either viscoelastic fluid or solid models. A model of plane-wave reflection from a fluid-sediment interface using EK-Biot theory leads to theoretical predictions that compare well to the experimental data for both sand and glass microspheres.
Date: April 22, 2005
Creator: Block, G I & Harris, J G
System: The UNT Digital Library
SPENT NUCLEAR FUEL: RESEARCH NEEDS (open access)

SPENT NUCLEAR FUEL: RESEARCH NEEDS

None
Date: November 22, 2005
Creator: Ewing, R. and Peters, M.
System: The UNT Digital Library
A Non-invasive Technique for Configuring Low Level RF Feedback Loops in PEP-II (open access)

A Non-invasive Technique for Configuring Low Level RF Feedback Loops in PEP-II

The RF system of the PEP-II collider uses two fast feedback loops around each klystron and set of cavities. These loops reduce the impedance of the fundamental mode of the accelerating cavities seen by the beam, and are necessary to reduce the growth rates of longitudinal modes within the RF system bandwidth. Operation of the accelerator at high beam currents is very sensitive to the configuration of the low-level RF feedback loops. There are 7 loop control parameters that strongly influence the stability of the feedback loops and the achieved level of longitudinal impedance reduction. Diagnostic techniques for the analysis of the RF feedback via closed-loop system transfer function measurements will be presented. The model is fit to the measured closed-loop transfer function data and the extracted parameters are then used to calculate optimal tuning and corrections to the loop control elements in the physical channel. These techniques allow fine-tuning of RF feedback with stored beam as well as diagnosis of misconfigured or malfunctioning elements of the system. Results from PEP-II operation will be presented to illustrate the techniques and their applications.
Date: June 22, 2005
Creator: Teytelman, D.
System: The UNT Digital Library
Multimode-diode-pumped gas (alkali-vapor) laser (open access)

Multimode-diode-pumped gas (alkali-vapor) laser

We report the first demonstration of a multimode-diode-pumped gas laser--Rb vapor operating on the 795 nm resonance transition. Peak output of {approx}1 Watt was obtained using a volume-Bragg-grating stabilized pump diode array. The laser's output radiance exceeded the pump radiance by a factor greater than 2000. Power scaling (by pumping with larger diode arrays) is therefore possible.
Date: August 22, 2005
Creator: Page, R H; Beach, R J & Kanz, V K
System: The UNT Digital Library