Resource Type

9 Matching Results

Results open in a new window/tab.

SUSY Without Prejudice at Linear Colliders (open access)

SUSY Without Prejudice at Linear Colliders

We explore the physics of the general CP-conserving MSSM with Minimal Flavor Violation, the pMSSM. The 19 soft SUSY breaking parameters are chosen so to satisfy all existing experimental and theoretical constraints assuming that the WIMP is the lightest neutralino. We scan this parameter space twice using both flat and log priors and compare the results which yield similar conclusions. Constraints from both LEP and the Tevatron play an important role in obtaining our final model samples. Implications for future TeV-scale e{sup +}e{sup -} linear colliders (LC) are discussed.
Date: December 11, 2008
Creator: Rizzo, Thomas G.
System: The UNT Digital Library
Global paths of time-periodic solutions of the Benjamin-Ono equation connecting arbitrary traveling waves (open access)

Global paths of time-periodic solutions of the Benjamin-Ono equation connecting arbitrary traveling waves

We classify all bifurcations from traveling waves to non-trivial time-periodic solutions of the Benjamin-Ono equation that are predicted by linearization. We use a spectrally accurate numerical continuation method to study several paths of non-trivial solutions beyond the realm of linear theory. These paths are found to either re-connect with a different traveling wave or to blow up. In the latter case, as the bifurcation parameter approaches a critical value, the amplitude of the initial condition grows without bound and the period approaches zero. We propose a conjecture that gives the mapping from one bifurcation to its counterpart on the other side of the path of non-trivial solutions. By experimentation with data fitting, we identify the form of the exact solutions on the path connecting two traveling waves, which represents the Fourier coefficients of the solution as power sums of a finite number of particle positions whose elementary symmetric functions execute simple orbits in the complex plane (circles or epicycles). We then solve a system of algebraic equations to express the unknown constants in the new representation in terms of the mean, a spatial phase, a temporal phase, four integers (enumerating the bifurcation at each end of the path) and one …
Date: December 11, 2008
Creator: Ambrose, David M. & Wilkening, Jon
System: The UNT Digital Library
HYDROGEN EFFECTS ON STRAIN-INDUCED MARTENSITE FORMATION IN TYPE 304L STAINLESS STEEL (open access)

HYDROGEN EFFECTS ON STRAIN-INDUCED MARTENSITE FORMATION IN TYPE 304L STAINLESS STEEL

Unstable austenitic stainless steels undergo a strain-induced martensite transformation. The effect of hydrogen on this transformation is not well understood. Some researchers believe that hydrogen makes the transformation to martensite more difficult because hydrogen is an austenite stabilizer. Others believe that hydrogen has little or no effect at all on the transformation and claim that the transformation is simply a function of strain and temperature. Still other researchers believe that hydrogen should increase the ability of the metal to transform due to hydrogen-enhanced dislocation mobility and slip planarity. While the role of hydrogen on the martensite transformation is still debated, it has been experimentally verified that this transformation does occur in hydrogen-charged materials. What is the effect of strain-induced martensite on hydrogen embrittlement? Martensite near crack-tips or other highly strained regions could provide much higher hydrogen diffusivity and allow for quicker hydrogen concentration. Martensite may be more intrinsically brittle than austenite and has been shown to be severely embrittled by hydrogen. However, it does not appear to be a necessary condition for embrittlement since Type 21-6-9 stainless steel is more stable than Type 304L stainless steel but susceptible to hydrogen embrittlement. In this study, the effect of hydrogen on strain-induced …
Date: December 11, 2008
Creator: Morgan, M & Ps Lam, P
System: The UNT Digital Library
KPiX, An Array of Self Triggered Charge Sensitive Cells Generating Digital Time and Amplitude Information (open access)

KPiX, An Array of Self Triggered Charge Sensitive Cells Generating Digital Time and Amplitude Information

The Silicon Detector proposed for the International Linear Collider (ILC) requires electronic read-out that can be tightly coupled to the silicon detectors envisioned for the tracker and the electromagnetic calorimeter. The KPiX is a 1024-channel read-out chip that bump-bonds to the detector and communicates through a few digital signals, power, and detector bias. The KPiX front-end is a low-noise dual-range charge-amplifier with a dynamic range of 17 bit, achieved by autonomous switching of the feedback capacitor. The device takes advantage of the ILC duty cycle of 1 ms trains at 5 Hz rate by lowering the supply current after the data acquisition cycle for an average power consumption of <20 {micro}W/channel. During the 1 ms train, up to four events exceeding a programmable threshold can be stored, the amplitude as a voltage on a capacitor for subsequent digitization, the event time in digital format. The chip can be configured for other than ILC applications.
Date: December 11, 2008
Creator: Freytag, D.; Herbst, R.; /SLAC; Brau, J.; U., /Oregon; Breidenbach, M. et al.
System: The UNT Digital Library
Search For the Lepton-Flavor Violating Decays Y(3S)->e tau and Y(3S)->mu tau (open access)

Search For the Lepton-Flavor Violating Decays Y(3S)->e tau and Y(3S)->mu tau

Charged lepton-flavor violating processes are extremely rare in the Standard Model, but they are predicted to occur in several beyond-the-Standard Model theories, including Supersymmetry or models with leptoquarks or compositeness. We present a search for such processes in a sample of 117 x 10{sup 6} {Upsilon}(3S) decays recorded with the BABAR detector. We place upper limits on the branching fractions BF({Upsilon}(3S) {yields} e{sup {+-}}{tau}{sup {-+}}) < 5.0 x 10{sup -6} and BF({Upsilon}(3S) {yields} {mu}{sup {+-}}{tau}{sup {-+}}) < 4.1 x 10{sup -6} at 90% confidence level. These results are used to place lower limits on the mass scale of beyond-the-Standard Model physics contributing to lepton-flavor violating decays of the {Upsilon}(3S).
Date: December 11, 2008
Creator: Aubert, B.
System: The UNT Digital Library
Dynamic Imaging of Surface Motion with a Stereo Borescope (open access)

Dynamic Imaging of Surface Motion with a Stereo Borescope

A new stereo borescope has been investigated that would provide a time-resolved calibrated method of recording the motion and deformation of a three-dimensional (3-D) surface during explosively driven dynamic shock experiments at the Nevada Test Site. In these experiments, geometries would likely prove to be incompatible with conventional direct optical systems. Single line-of-sight borescopes lack adequate depth-of-field for quantitative imaging of the 3-D surface. To improve depth-of-field and provide time resolution, a stereo borescope has been fabricated for use with a nine-frame framing camera. At one end, stereo optics couple light from the dynamic surface into a pair of flexible 1-mm-diameter correlated fiber-optic bundles. At the other end, small-format lenses (~3 mm) interface with the framing camera, which is set up to simultaneously record the separate-perspective views. All nine frames could be recorded in a period as short as 1.8 μs, and spatial resolution is optimized to 11 line-pairs per mm. To achieve pseudo 3-D depth perception, photogrammetric analysis has been demonstrated with commercial software from ADAM technology (Australia). This paper presents the results from time-resolved stereo images of dynamic surfaces collected in a series of high-explosives experiments at the National Security Technologies, LLC, “Boom Box” in Santa Barbara, CA. …
Date: December 11, 2008
Creator: Berninger, Michael & Baker, Stuart
System: The UNT Digital Library
Modular Optical PDV System (open access)

Modular Optical PDV System

A modular optical photon Doppler velocimetry (PDV) detector system has been developed by using readily available optical components with a 20-GHz Miteq optical detector into eight channels of single-wide modules integrated into a 3U rack unit (1U = 1.75 inches) with a common power supply. Optical fibers were precisely trimmed, welded, and timed within each unit. This system has been used to collect dynamic velocity data on various physics experiments. An optical power meter displays the laser input power to the module and optical power at the detector. An adjustable micro-electromechanical system (MEMS) optical attenuator is used to adjust the amount of unshifted light entering the detector. Front panel LEDs show the presence of power to the module. A fully loaded chassis with eight channels consumes 45 watts of power. Each chassis requires 1U spacing above and below for heat management. Modules can be easily replaced.
Date: December 11, 2008
Creator: Araceli Rutkowski, David Esquibel
System: The UNT Digital Library
Electronically Nonadiabatic Dynamics via Semiclassical Initial Value Methods (open access)

Electronically Nonadiabatic Dynamics via Semiclassical Initial Value Methods

In the late 1970's Meyer and Miller (MM) [J. Chem. Phys. 70, 3214 (1979)] presented a classical Hamiltonian corresponding to a finite set of electronic states of a molecular system (i.e., the various potential energy surfaces and their couplings), so that classical trajectory simulations could be carried out treating the nuclear and electronic degrees of freedom (DOF) in an equivalent dynamical framework (i.e., by classical mechanics), thereby describing non-adiabatic dynamics in a more unified manner. Much later Stock and Thoss (ST) [Phys. Rev. Lett. 78, 578 (1997)] showed that the MM model is actually not a 'model', but rather a 'representation' of the nuclear-electronic system; i.e., were the MMST nuclear-electronic Hamiltonian taken as a Hamiltonian operator and used in the Schroedinger equation, the exact (quantum) nuclear-electronic dynamics would be obtained. In recent years various initial value representations (IVRs) of semiclassical (SC) theory have been used with the MMST Hamiltonian to describe electronically non-adiabatic processes. Of special interest is the fact that though the classical trajectories generated by the MMST Hamiltonian (and which are the 'input' for an SC-IVR treatment) are 'Ehrenfest trajectories', when they are used within the SC-IVR framework the nuclear motion emerges from regions of non-adiabaticity on one …
Date: December 11, 2008
Creator: Miller, William H.
System: The UNT Digital Library
SUSY Without Prejudice (open access)

SUSY Without Prejudice

We begin an exploration of the physics associated with the general CP-conserving MSSM with Minimal Flavor Violation, the pMSSM. The 19 soft SUSY breaking parameters in this scenario are chosen so as to satisfy all existing experimental and theoretical constraints assuming that the WIMP is a thermal relic, i.e., the lightest neutralino. We scan this parameter space twice using both flat and log priors for the soft SUSY breaking mass parameters and compare the results which yield similar conclusions. Detailed constraints from both LEP and the Tevatron searches play a particularly important role in obtaining our final model samples. We find that the pMSSM leads to a much broader set of predictions for the properties of the SUSY partners as well as for a number of experimental observables than those found in any of the conventional SUSY breaking scenarios such as mSUGRA. This set of models can easily lead to atypical expectations for SUSY signals at the LHC.
Date: December 11, 2008
Creator: Berger, Carola F.; Gainer, James S.; Hewett, JoAnne L. & Rizzo, Thomas G.
System: The UNT Digital Library